
SUN/40.6

Starlink Project
Starlink User Note 40.6

A C Charles
P C T Rees

A J Chipperfield
T Jenness

D Berry

16 May 2018

Copyright c© 2018 East Asian Observatory

CHR
Character Handling Routines

3.0
Programmer’s Manual

SUN/40.6 —Abstract ii

Abstract

This document describes the Character Handling Routine library, CHR, and its use. The CHR
library augments the limited character handling facilities provided by the Fortran 77 standard.
It offers a range of character handling facilities: from formatting Fortran data types into text
strings and the reverse, to higher level functions such as wild card matching, string sorting,
paragraph reformatting and justification. The library may be used simply for building text
strings for interactive applications or as a basis for more complex text processing applications.

Copyright c© 2018 East Asian Observatory

iii SUN/40.6—Contents

Contents

1 Introduction 1

2 Error Handling 1

3 Compiling and Linking 2

4 Efficiency Considerations 3

A Include Files 3

B Classified List of Routines 5
B.1 Change case . 5
B.2 Compare strings . 5
B.3 Decode Fortran data types . 5
B.4 Edit strings . 6
B.5 Encode Fortran data types . 6
B.6 Enquire . 7
B.7 Facilitate Portability . 7
B.8 Search strings . 8

C Routine Descriptions 9
CHR_ABBRV . 10
CHR_ACHR . 11
CHR_APPND . 12
CHR_ATOK . 13
CHR_ATOM . 14
CHR_BTOI . 15
CHR_CLEAN . 16
CHR_COPY . 17
CHR_CTOC . 18
CHR_CTOD . 19
CHR_CTOI . 20
CHR_CTOL . 21
CHR_CTOR . 22
CHR_DCWRD . 23
CHR_DELIM . 24
CHR_DTOAN . 25
CHR_DTOC . 26
CHR_EQUAL . 27
CHR_ETOM . 28
CHR_FANDL . 29
CHR_FILL . 30
CHR_FIND . 31
CHR_FIWE . 32
CHR_FIWS . 33
CHR_FPARX . 34
CHR_HTOI . 35

SUN/40.6 —Contents iv

CHR_IACHR . 36
CHR_INDEX . 37
CHR_INSET . 38
CHR_ISALF . 39
CHR_ISALM . 40
CHR_ISDIG . 41
CHR_ISNAM . 42
CHR_ITOB . 43
CHR_ITOC . 44
CHR_ITOH . 45
CHR_ITOO . 46
CHR_LASTO . 47
CHR_LCASE . 48
CHR_LDBLK . 49
CHR_LEN . 50
CHR_LINBR . 51
CHR_LOWER . 52
CHR_LTOC . 53
CHR_MOVE . 54
CHR_MTOA . 55
CHR_MTOE . 56
CHR_NTH . 57
CHR_OTOI . 58
CHR_PFORM . 59
CHR_PREFX . 60
CHR_PUTC . 61
CHR_PUTD . 62
CHR_PUTI . 63
CHR_PUTL . 64
CHR_PUTR . 65
CHR_RJUST . 66
CHR_RMBLK . 67
CHR_RMCHR . 68
CHR_RTOAN . 69
CHR_RTOC . 70
CHR_SCOMP . 71
CHR_SIMLR . 72
CHR_SIZE . 73
CHR_SKCHR . 74
CHR_SORT . 75
CHR_SWAP . 76
CHR_TERM . 77
CHR_TOCHR . 78
CHR_TRCHR . 79
CHR_TRUNC . 80
CHR_UCASE . 81
CHR_UPPER . 82
CHR_WILD . 83

v SUN/40.6 —Contents

D C Function Descriptions 84
D.1 Overview . 84

chrAppnd . 85
chrClean . 86
chrCtod . 87
chrCtoi . 88
chrCtor . 89
chrFandl . 90
chrFill . 91
chrFparx . 92
chrIsalm . 93
chrIsnam . 94
chrItoc . 95
chrLdblk . 96
chrLen . 97
chrPutc . 98
chrPuti . 99
chrRmblk . 100
chrSimlr . 101
chrSimlrN . 102
chrSizetoc . 103
chrUcase . 104

E Portability 105
E.1 Overview . 105
E.2 Coding and porting prerequisites . 105
E.3 Operating system specific routines . 105

F Changes and New Features in Version 2.0 106
F.1 Obsolete routines . 106
F.2 Changes in behaviour of existing routines . 106
F.3 New routines . 106
F.4 Other changes . 107

G Changes and New Features in Version 2.2 107
G.1 Changes in behaviour of existing routines . 107
G.2 Documentation Changes . 107

H Changes and New Features in Version 3.0 108

1 SUN/40.6 —Error Handling

1 Introduction

The Fortran 77 standard provides a data type for the storage of character strings (the type
CHARACTER), an operator specific to character data (the // operator for string concatenation), and
eight intrinsic functions specifically for handling CHARACTER typed variables (CHAR, ICHAR, INDEX,
LEN, LGE, LGT, LLE, LLT). Facilities to write and read Fortran data types to and from character
strings (using internal files and the WRITE and READ statements respectively) are also provided
by the Fortran 77 standard. Although these features of the Fortran language are of considerable
utility when handling character variables in Fortran programs, they constitute only the basic
tools for the more extensive processing of textual data sometimes required in applications.

The CHR library augments the limited character handling facilities provided by the Fortran
77 standard. It offers a range of character handling facilities: from formatting Fortran data
types into text strings and the reverse, to higher level functions such as wild card matching,
string sorting, paragraph reformatting and justification. The library may be used simply for
building text strings for interactive applications or as a basis for more complex text processing
applications.

The functions performed by the CHR library may be categorised as follows:

• change case

• compare strings

• decode Fortran data types

• edit strings

• encode Fortran data types

• enquire

• facilitate portability

• search strings

A classified list of of these routines is given in Appendix B.

Equivalent functions written entirely in C are available for a subset of the CHR routines (see
Appendix D). These are provided mainly for use when porting Fortran application code to C.

2 Error Handling

None of the CHR routines report error messages; i.e. they do not use the Starlink Error Reporting
System , ERR (see SUN/104). However, some routines do use the inherited status conventions
(described in SUN/104) to indicate success or failure. Those CHR routines which do not have a
status argument handle any errors internally and have a specified behaviour on error. Those
CHR routines which do have a status argument fall into two categories: those which obey the

http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun104.htx/sun104.html?xref_inherited_status

SUN/40.6 —Compiling and Linking 2

full inherited status conventions and return without action if given a status value other than
SAI__OK, and those which ignore the given status and just return a status value on exit. The
following routines obey the full inherited status conventions:

• CHR_BTOI

• CHR_CTOD

• CHR_CTOI

• CHR_CTOL

• CHR_CTOR

• CHR_FIWE

• CHR_FIWS

• CHR_HTOI

• CHR_OTOI

The routines CHR_COPY, CHR_DCWRD and CHR_TRCHR all just return a status set to a value
not equal to SAI__OK on error.

The symbolic names of the error values used by CHR are given in Appendix A.

3 Compiling and Linking

The two include files available for use with the Character Handling Routines are named sae_par
and chr_err on UNIX machines, and reside in the directory /star/include.

When including these files within Fortran code, the Starlink convention is that the name in
upper case with no path or extension is specified when including these files within Fortran code,
e.g.

* Global Constants:
INCLUDE ’SAE_PAR’
INCLUDE ’CHR_ERR’

Assuming that the software has been installed in the standard way and /star/bin has been
added to the environment variable PATH, soft links with these upper-case names pointing to
the required file are set up in the user’s working directory by the the commands:

% star_dev
% chr_dev

Then to compile and link a non-ADAM program, the command line would be, e.g.

3 SUN/40.6 —Include Files

% f77 -o program program.f -L/star/lib ‘chr_link‘

The CHR library is included automatically when programs are linked using the ADAM applica-
tion linking commands, alink etc.

If it is necessary to link explicitly with the ADAM version of CHR (e.g. to produce a shareable
library), the script chr_link_adam is available in /star/bin. The link command might be:

% ld -shared -o libmypkg.so.1.0 -lmypkg ‘chr_link_adam‘

4 Efficiency Considerations

Several routines provided by CHR have implications for the efficiency of applications which
make heavy use of them. These routines when used judiciously present no efficiency problem,
but when they are used indiscriminantly they can have a marked effect on execution times.

CHR_CTOx These routines make use of the Fortran internal READ statements which can have an
impact upon execution times when used heavily. Within an application it is only absolutely
necessary to perform this type conversion once, when it is needed. If both representations
are needed within an application, store both.

CHR_LEN Checking the used length of a given CHARACTER argument within every subroutine
can have a significant impact upon execution times and should be avoided. For character
strings which are not modified, CHR_LEN need only be called once. The used length of
the string may then be passed as an additional subroutine argument, e.g.

STRLEN = CHR_LEN(STRING)
CALL SUBN(STRING, STRLEN, STATUS)

or the substring that represents the filled part of the string may be passed to the subroutine,
e.g.

STRLEN = CHR_LEN(STRING)
CALL SUBN(STRING(1 : STRLEN), STATUS)

CHR_xTOC These routines make use of the Fortran internal WRITE statements which can have
an impact upon execution times when used heavily. Within an application it is only
absolutely necessary to perform this type conversion once, when it is needed. If both
representations are needed within an application, store both.

A Include Files

There are two include files used by the Character Handling Routines to define global constants
during compilation. These files have the logical names SAE_PAR and CHR_ERR. The contents
of each of these include files are given below.

SUN/40.6 —Include Files 4

CHR_ERR Defines the Character Handling Routine errors.

CHR__EOSNT – End of sentence.

CHR__WNOTF – Word not found.

SAE_PAR Defines the global constants SAI__OK and SAI__ERROR.

SAI__ERROR – Error encountered.

SAI__OK – No error.

SAI__WARN – Warning.

5 SUN/40.6 —Classified List of Routines

B Classified List of Routines

The classifications are in alphabetical order as follows:

Change case – Change the case of a character string.

Compare strings – Compare two character strings.

Decode Fortran data types – Convert a character string into a Fortran data type and return its
value.

Editing strings – Edit character strings by replacing, adding or removing defined substrings.

Encode Fortran data types – Convert a Fortran data type into a character string representation
of its value.

Enquire – Return information about a character string.

Facilitate portability – Tools for assisting portability, especially to or from non-ASCII environ-
ments.

Search strings – Search a character string.

B.1 Change case

CHR_LCASE – Convert a string to lower case.

CHR_LOWER – Return the lower case equivalent of a character.

CHR_UCASE – Convert a string to upper case.

CHR_UPPER – Return the upper-case equivalent of a character.

B.2 Compare strings

CHR_ABBRV – Return whether two strings are equal apart from case, permitting abbreviation.

CHR_SCOMP – Compare two character strings using the ASCII character set.

CHR_SIMLR – Return whether two strings are equal, apart from case.

CHR_WILD – Return whether a string matches a wild-card pattern.

B.3 Decode Fortran data types

CHR_BTOI – Read an INTEGER value from a binary string.

CHR_CTOC – Write a CHARACTER string into another string.

CHR_CTOD – Read a DOUBLE PRECISION value from a string.

SUN/40.6 —Classified List of Routines 6

CHR_CTOI – Read an INTEGER value from a string.

CHR_CTOL – Read a LOGICAL value from a string.

CHR_CTOR – Read a REAL value from a string.

CHR_HTOI – Read an INTEGER value from a hexadecimal string.

CHR_OTOI – Read an integer from an octal string.

B.4 Edit strings

CHR_APPND – Copy one string into another, ignoring trailing blanks.

CHR_CLEAN – Remove all unprintable characters from a string.

CHR_COPY – Copy one string into another, checking for truncation.

CHR_DCWRD – Split a string into its component words.

CHR_FILL – Fill a string with a given character.

CHR_LDBLK – Remove any leading blanks from a string.

CHR_LINBR – Break a line of text into a sequence of shorter lines.

CHR_PFORM – Reformat a paragraph to a new width.

CHR_PREFX – Prefix a string with a substring.

CHR_RJUST – Right-justify a string.

CHR_RMBLK – Remove all blanks from a string.

CHR_RMCHR – Remove all specified characters from a string.

CHR_SORT – Sort an array of character strings into alphabetical order.

CHR_SWAP – Swap two single-character variables.

CHR_TERM – Terminate a string by padding out with blanks.

CHR_TRCHR – Translate the specified characters in a string.

CHR_TRUNC – Truncate a string at a given delimiter.

B.5 Encode Fortran data types

CHR_DTOAN – Write a DOUBLE PRECISION value into a string as hr/deg:min:sec.

CHR_DTOC – Write a DOUBLE PRECISION value into a string.

CHR_ITOB – Write an INTEGER value as a binary string.

CHR_ITOC – Write an INTEGER value as a decimal string.

7 SUN/40.6 —Classified List of Routines

CHR_ITOH – Write an INTEGER value as a hexadecimal string.

CHR_ITOO – Write an INTEGER value as an octal string.

CHR_LTOC – Write a LOGICAL value into a string.

CHR_PUTC – Put a CHARACTER string into another at a given position.

CHR_PUTD – Put a DOUBLE PRECISION value into a string at a given position.

CHR_PUTI – Put an INTEGER value into a string at a given position.

CHR_PUTL – Put a LOGICAL value into a string at a given position.

CHR_PUTR – Put a REAL value into a string at a given position.

CHR_RTOAN – Write a REAL value into a string as hr/deg:min:sec.

CHR_RTOC – Write a REAL value into a string.

B.6 Enquire

CHR_NTH – Return the two-character abbreviation for a specified integer.

CHR_INSET – Return whether a string is a member of a given set.

CHR_ISALF – Return whether a character is alphabetic.

CHR_ISALM – Return whether a character is alphanumeric.

CHR_ISDIG – Return whether a character is a digit.

CHR_ISNAM – Return whether a string is a valid name.

CHR_LEN – Return the length of a string, ignoring trailing blanks.

B.7 Facilitate Portability

CHR_ACHR – Return the character for a given ASCII value.

CHR_ATOK – Return the character for a given ASCII character token.

CHR_ATOM – Translate a string from ASCII to the machine’s character set.

CHR_ETOM – Translate a string from EBCDIC to machine’s character set.

CHR_IACHR – Return the ASCII value for a given character.

CHR_MTOA – Translate a string from machine’s character set to ASCII.

CHR_MTOE – Translate a string from machine’s character set to EBCDIC.

SUN/40.6 —Classified List of Routines 8

B.8 Search strings

CHR_DELIM – Locate a substring using a given delimiter character.

CHR_FANDL – Find the first and last non-blank characters in a string.

CHR_FIND – Find the next occurrence of a given substring within a string.

CHR_FIWE – Find the next end-of-word within a string.

CHR_FIWS – Find the start of the next word within a string.

CHR_FPARX – Find a parenthesised expression in a character string.

CHR_LASTO – Find the last occurrence of character in a string.

CHR_SKCHR – Skip over all specified characters in a string.

CHR_TOCHR – Skip to the next specified character in a string.

9 SUN/40.6 —Routine Descriptions

C Routine Descriptions

SUN/40.6 —Routine Descriptions 10 CHR_ABBRV

CHR_ABBRV
Return whether two strings are equal apart from case, permitting

abbreviations

Description:
Returns a logical result indicating whether two strings are the same, apart from case. In assessing
this, the first string is allowed to be an abbreviation of the second string, as long as it contains a
specified minimum number of characters.

Invocation:
RESULT = CHR_ABBRV(STR1, STR2, NCHAR)

Arguments:

STR1 = CHARACTER ∗ (∗) (Given)
The first string, which may be an abbreviation.

STR2 = CHARACTER ∗ (∗) (Given)
The second string.

NCHAR = INTEGER (Given)
The minimum number of characters to which the first string may be abbreviated (a smaller number
will be accepted if there are actually fewer than NCHAR characters in STR2).

Returned Value:

CHR_ABBRV = LOGICAL
Whether the two strings match after allowing for case and abbreviation of the first string to no less
than NCHAR characters.

11 CHR_ACHR SUN/40.6 —Routine Descriptions

CHR_ACHR
Return the character for a given ASCII value

Description:
The given ASCII value is converted to a single returned character in the machine’s character set. If
no such character exists within the machine’s character set, the character code 0 (the ASCII NUL
character) is returned.

Invocation:
RESULT = CHR_ACHR(ASCII)

Arguments:

ASCII = INTEGER (Given)
The position of the character within the ASCII character set.

Returned Value:

CHR_ACHR = CHARACTER ∗ 1
A character value within the machine’s character set.

SUN/40.6 —Routine Descriptions 12 CHR_APPND

CHR_APPND
Copy one string into another, ignoring trailing blanks

Description:
The string STR1 (or as much of it as there is room for) is copied into the part of STR2 beginning
at position IPOSN+1. IPOSN is updated to indicate the final length of STR2 after this operation.
Trailing blanks in STR1 are ignored.

Invocation:
CALL CHR_APPND(STR1, STR2, IPOSN)

Arguments:

STR1 = CHARACTER ∗ (∗) (Given)
The string to be copied.

STR2 = CHARACTER ∗ (∗) (Given and Returned)
The string to be updated.

IPOSN = INTEGER (Given and Returned)
The position in STR2 at which STR1 is to be appended. This value is returned updated to be the
position of the last non-blank character in STR2 after the copy.

13 CHR_ATOK SUN/40.6 —Routine Descriptions

CHR_ATOK
Return the character for a given ASCII character token

Description:
The given ASCII character token is converted to a single returned character in the machine’s
character set. All non-printable ASCII characters are represented by their equivalent token strings.
If no such ASCII character exists, the character code 0 (the ASCII NUL character) is returned. The
routine is intended for the portable initialisation of unprintable characters.

Invocation:
RESULT = CHR_ATOK(TOKEN)

Arguments:

TOKEN = CHARACTER ∗ (∗) (Given)
A printable character string representing the character to be returned, e.g., ’BEL’, ’BS’, etc.

Returned Value:

CHR_ATOK = CHARACTER ∗ 1
The character code within the ASCII character set.

SUN/40.6 —Routine Descriptions 14 CHR_ATOM

CHR_ATOM
Translate a string from ASCII to the machine’s character set

Description:
The string STR1, which has been written on a machine which uses the ASCII character set and
subsequently read on another machine is returned in STR2 translated into the correct character set
for that machine.

Invocation:
CALL CHR_ATOM(STR1, STR2)

Arguments:

STR1 = CHARACTER ∗ (∗) (Given)
The character string written on a machine with an ASCII character set and read on a machine
which may not use ASCII.

STR2 = CHARACTER ∗ (∗) (Returned)
The character string translated into the machine’s character set. If STR2 is shorter than STR1, the
translated string will be truncated; if STR2 is longer than STR1, STR2 will be padded with blanks
beyond the translated string.

15 CHR_BTOI SUN/40.6 —Routine Descriptions

CHR_BTOI
Read an INTEGER value from a binary string

Description:
The given binary string is decoded into an INTEGER value.

Invocation:
CALL CHR_BTOI(STRING, IVALUE, STATUS)

Arguments:

STRING = CHARACTER ∗ (∗) (Given)
String to be decoded, e.g. ’10101100’.

IVALUE = INTEGER (Returned)
Value decoded from the given string.

STATUS = INTEGER (Given and Returned)
The status value. If this value is not SAI__OK on input, the routine returns without action. If the
routine fails to complete successfully, STATUS is returned set to SAI__ERROR.

Notes:
This subroutine assumes a 32-bit, twos-complement representation of an INTEGER.

SUN/40.6 —Routine Descriptions 16 CHR_CLEAN

CHR_CLEAN
Remove all unprintable characters from a string

Description:
Replace all unprintable characters in the given string with blanks.

Invocation:
CALL CHR_CLEAN(STRING)

Arguments:

STRING = CHARACTER ∗ (∗) (Given and Returned)
String to be cleaned.

17 CHR_COPY SUN/40.6 —Routine Descriptions

CHR_COPY
Copy one string to another, checking for truncation

Description:
This routine copies one character string to another, checking for truncation caused by the returned
string being too short to accommodate the entire given string. As much of the given string as
possible is copied to the returned string, ignoring any trailing blanks. If truncation is found, it is
indicated by the returned status. Optionally, the last character of the returned string may also be
set to ’#’ if truncation occurs.

Invocation:
CALL CHR_COPY(STR1, TRUNC, STR2, LSTAT)

Arguments:

STR1 = CHARACTER ∗ (∗) (Given)
The given string.

TRUNC = LOGICAL (Given)
A logical flag indicating the action to be taken if truncation occurs: if TRUNC is .TRUE., a ’#’ will
be written into the last element of the returned string on truncation; if TRUNC is .FALSE., no ’#’ is
written to the returned string.

STR2 = CHARACTER ∗ (∗) (Returned)
The returned string. This will contain the given string, possibly truncated.

LSTAT = INTEGER (Returned)
The status: 0 for success, 1 if truncation occurs.

SUN/40.6 —Routine Descriptions 18 CHR_CTOC

CHR_CTOC
Write a CHARACTER string into another string

Description:
Write the given character string into the returned character string. If the given string is longer than
the returned string, the given string is truncated. If the returned string is longer than the given
character variable, the remainder of the returned string is padded with blanks.

Invocation:
CALL CHR_CTOC(STR1, STR2, NCHAR)

Arguments:

STR1 = CHARACTER ∗ (∗) (Given)
The value to be written.

STR2 = CHARACTER ∗ (∗) (Returned)
The character string into which the value is to be written.

NCHAR = INTEGER (Returned)
The resulting length of the character string, ignoring trailing blanks.

19 CHR_CTOD SUN/40.6 —Routine Descriptions

CHR_CTOD
Read a DOUBLE PRECISION value from a string

Description:
Read a DOUBLE PRECISION value from the given character string.

Invocation:
CALL CHR_CTOD(STRING, DVALUE, STATUS)

Arguments:

STRING = CHARACTER ∗ (∗) (Given)
The string from which a DOUBLE PRECISION value is to be read.

DVALUE = DOUBLE PRECISION (Returned)
The resulting DOUBLE PRECISION value.

STATUS = INTEGER (Given and Returned)
The status value: if this value is not SAI__OK on input, the routine returns without action; if the
routine does not complete successfully, STATUS is returned set to SAI__ERROR.

SUN/40.6 —Routine Descriptions 20 CHR_CTOI

CHR_CTOI
Read an INTEGER value from a string

Description:
Read an INTEGER value from the given character string.

Invocation:
CALL CHR_CTOI(STRING, IVALUE, STATUS)

Arguments:

STRING = CHARACTER ∗ (∗) (Given)
The string from which an INTEGER value is to be read.

IVALUE = INTEGER (Returned)
The resulting INTEGER value.

STATUS = INTEGER (Given and Returned)
The status value. If this value is not SAI__OK on input, the routine returns without action; if the
routine does not complete successfully, STATUS is returned set to SAI__ERROR.

21 CHR_CTOL SUN/40.6 —Routine Descriptions

CHR_CTOL
Read a LOGICAL value from a string

Description:
The given string is decoded as a logical value. TRUE, T, YES, Y and FALSE, F, NO, N are recognised,
regardless of case. Other strings result in STATUS being set to SAI__ERROR.

Invocation:
CALL CHR_CTOL(STRING, LVALUE, STATUS)

Arguments:

STRING = CHARACTER ∗ (∗) (Given)
The string from which a LOGICAL value is to be read.

LVALUE = LOGICAL (Returned)
The resulting LOGICAL value.

STATUS = INTEGER (Given and Returned)
The status value: if this value is not SAI__OK on input, the routine returns without action; if the
routine does not complete successfully, STATUS is returned set to SAI__ERROR.

SUN/40.6 —Routine Descriptions 22 CHR_CTOR

CHR_CTOR
Read a REAL value from a string

Description:
Read a REAL value from the given character string.

Invocation:
CALL CHR_CTOR(STRING, RVALUE, STATUS)

Arguments:

STRING = CHARACTER ∗ (∗) (Given)
The string from which a REAL value is to be read.

RVALUE = REAL (Returned)
The resulting REAL value.

STATUS = INTEGER (Given and Returned)
The status value: if this value is not SAI__OK on input, the routine returns without action; if the
routine does not complete successfully, STATUS is returned set to SAI__ERROR.

23 CHR_DCWRD SUN/40.6 —Routine Descriptions

CHR_DCWRD
Split a string into its component words

Description:
All the words in the given character string are detected and returned as individual elements of a
character array. In this context, a word is defined as a continuous string of non-blank characters.
Hence words must be separated from each other by one or more blanks.

Invocation:
CALL CHR_DCWRD(STRING, MXWRD, NWRD, START, STOP, WORDS, LSTAT)

Arguments:

STRING = CHARACTER ∗ (∗) (Given)
The string to be split into its constituent words.

MXWRD = INTEGER (Given)
The maximum number of words that can be extracted from the given string: if there are more than
MXWRD words in the string, only the first MXWRD will be returned.

NWRD = INTEGER (Returned)
The number of words located in the string.

START(MXWRD) = INTEGER (Returned)
The Ith element contains the position of the first element of the Ith word in the given string.

STOP(MXWRD) = INTEGER (Returned)
The Ith element contains the position of the last element of the Ith word in the given string.

WORDS(MXWRD) = CHARACTER ∗ (∗) (Returned)
The Ith element contains the Ith word located in the given string.

LSTAT = INTEGER (Returned)
The local status. This is a return status only: the routine is not affected by the value on input. It has
the following values: SAI__OK for successful completion, SAI__ERROR if the number of words
exceeds MXWRD.

SUN/40.6 —Routine Descriptions 24 CHR_DELIM

CHR_DELIM
Locate a substring using a given delimiter character

Description:
The given character string is examined to see if it contains a substring delimited by the character,
DELIM. The indices of the first and last characters of the substring are returned as INDEX1 and
INDEX2 respectively. If no occurrence of the specified delimiter is found, or if the only occurrence
is the last character of the string, then the indices are returned pointing to the whole of the input
string. If only one occurrence of the delimiter is found and it is not the last character in the string,
INDEX1 will point to this position and INDEX2 will point to the last character in the string. If
there are more than two of the occurrences of the delimiter character, INDEX1 will point to the first
occurrence and INDEX2 to the last occurrence.

Invocation:
CALL CHR_DELIM(STRING, DELIM, INDEX1, INDEX2)

Arguments:

STRING = CHARACTER ∗ (∗) (Given)
The character string to be searched.

DELIM = CHARACTER ∗ 1 (Given)
The substring delimiting character.

INDEX1 = INTEGER (Returned)
The position of the first occurrence of the delimiter, or the first character in the string.

INDEX2 = INTEGER (Returned)
The position of the last occurrence of the delimiter, or the last character in the string.

25 CHR_DTOAN SUN/40.6 —Routine Descriptions

CHR_DTOAN
Write a DOUBLE PRECISION value into a string as hr/deg:min:sec

Description:
Format a DOUBLE PRECISION value as hours/degrees:minutes:seconds and write it into a
character string. This routine is for writing angular measures into a character string in a format
suitable for presentation to an astronomer.
If the absolute value of the number to be written exceeds a predefined maximum a conversion
is not attempted, but the number is written as a real number in Fortran ‘exponential’ format and
a couple of question marks are appended to its end. This prevents silly results when very large
numbers are input. The variable UNITS controls the maximum permitted value for the conversion
to be carried out.
The value is written into the part of the string beginning at position IPOSN+1 and IPOSN is
returned updated to the position of the end of the encoded angle in STRING.

Invocation:
CALL CHR_DTOAN(DVALUE, UNITS, STRING, IPOSN)

Arguments:

DVALUE = DOUBLE PRECISION (Given)
The value to be encoded into the string. This value should represent an angular measure.

UNITS = CHARACTER ∗ (∗) (Given)
This string controls the maximum value which will be formatted as hr/deg:min:sec: if UNITS =
’HOURS’, the maximum permitted value is 24.0; if UNITS = ’DEGREES’, the maximum permitted
is 360.0. In all other cases the maximum is 1000.0.

STRING = CHARACTER ∗ (∗) (Given and Returned)
The string into which DVALUE is written.

IPOSN = INTEGER (Given and Returned)
Given as the last element in STRING before the beginning of the encoded angle. Returned as the
element in STRING corresponding to the end of the encoded angle.

SUN/40.6 —Routine Descriptions 26 CHR_DTOC

CHR_DTOC
Encode a DOUBLE PRECISION value as a string

Description:
Encode a DOUBLE PRECISION value as a character string, using as concise a format as possible,
and return the number of characters used. In the event of an error, ’∗’s are written to the string.

Invocation:
CALL CHR_DTOC(DVALUE, STRING, NCHAR)

Arguments:

DVALUE = DOUBLE PRECISION (Given)
The value to be encoded.

STRING = CHARACTER ∗ (∗) (Returned)
The string into which the value is to be encoded.

NCHAR = INTEGER (Returned)
The field width used in encoding the value.

27 CHR_EQUAL SUN/40.6 —Routine Descriptions

CHR_EQUAL
Return whether two strings are equal

Description:
Determine whether the two given strings are the same, with case distinction. Their lengths must be
identical after removing trailing blanks.

Invocation:
RESULT = CHR_EQUAL(STR1, STR2)

Arguments:

STR1 = CHARACTER ∗ (∗) (Given)
The first string.

STR2 = CHARACTER ∗ (∗) (Given)
The second string.

Returned Value:

CHR_EQUAL = LOGICAL
Returned as .TRUE. if the two given strings are the same, otherwise .FALSE.

Notes:
This routine is OBSOLETE. It exists for historical reasons. Its function is better performed by a
Fortran relational expression.

SUN/40.6 —Routine Descriptions 28 CHR_ETOM

CHR_ETOM
Translate a string from EBCDIC to the machine’s character set

Description:
The string STR1, which has been written on a machine which uses the EBCDIC character set
and subsequently read on a machine which may not use the EBCDIC character set to represent
characters in Fortran, is returned in STR2 translated into the correct character set for the host
machine.

Invocation:
CALL CHR_ETOM(STR1, STR2)

Arguments:

STR1 = CHARACTER ∗ (∗) (Given)
The character string written on a machine with an EBCDIC character set and read on a machine
which may not use EBCDIC to represent characters in Fortran.

STR2 = CHARACTER ∗ (∗) (Returned)
The translated EBCDIC character string. If STR2 is shorter than STR1, the translated string will be
truncated; if STR2 is longer than STR1, STR2 will be padded with blanks beyond the translated
string.

Notes:
This subroutine has been implemenred for machines which use the ASCII character set.

29 CHR_FANDL SUN/40.6 —Routine Descriptions

CHR_FANDL
Find the first and last non-blank characters in a string

Description:
Find the indices of the first and last non-blank characters in the given string. If the string is all
blank, the first index is returned set to the end of the string and the last index is returned set to
zero, i.e. INDEX1 is greater than INDEX2. If the string has no length, i.e. it is a substring with the
first index greater than the second, both indices are returned set to zero.

Invocation:
CALL CHR_FANDL(STRING, INDEX1, INDEX2)

Arguments:

STRING = CHARACTER ∗ (∗) (Given)
The character string.

INDEX1 = INTEGER (Returned)
The position of first non-blank character.

INDEX2 = INTEGER (Returned)
The position of last non-blank character.

SUN/40.6 —Routine Descriptions 30 CHR_FILL

CHR_FILL
Fill a string with a given character

Description:
The given character string is filled with the specified character.

Invocation:
CALL CHR_FILL(CVALUE, STRING)

Arguments:

CVALUE = CHARACTER (Given)
The character specified to fill the string.

STRING = CHARACTER ∗ (∗) (Returned)
The string to be filled.

31 CHR_FIND SUN/40.6 —Routine Descriptions

CHR_FIND
Find the next occurrence of given substring within a string

Description:
Increments a pointer to a character position within the given string and checks if the following
sequence of characters matches the specified substring, ignoring differences in case. The search
may be performed either forwards or backwards. If a match is found, the position of the substring
is returned. If no match exists, the pointer is set to one more than the length of the string if the
search is forwards, zero if the search is backwards.

Invocation:
CALL CHR_FIND(STRING, SUBSTR, FORWD, IPOSN)

Arguments:

STRING = CHARACTER ∗ (∗) (Given)
The string to be searched.

SUBSTR = CHARACTER ∗ (∗) (Given)
The substring to be searched for, ignoring case.

FORWD = LOGICAL (Given)
The search direction: if .TRUE., proceed through the string in a forward direction, otherwise work
backwards.

IPOSN = INTEGER (Given and Returned)
The starting position for the search. If the initial value of IPOSN does not point at a character
within the string, the routine returns without action.

SUN/40.6 —Routine Descriptions 32 CHR_FIWE

CHR_FIWE
Find the next end-of-word within a string

Description:
Find the next end-of-word, signified by the following character being a word delimiter (SPACE,
TAB or COMMA). Note that the start of the next word is not found before looking for the next
word delimiter so it is possible for IPOSN to remain unchanged and indeed to point to a word
delimiter rather than a true end of a word. This routine is expected to be used in conjunction with
CHR_FIWS.

Invocation:
CALL CHR_FIWE (STRING, IPOSN, STATUS)

Arguments:

STRING = CHARACTER ∗ (∗) (Given)
The string to be searched.

IPOSN = INTEGER (Given and Returned)
The given value is the character position within the string at which searching is to start. If IPOSN
is less than 1, the search starts at position 1. The returned value is the character position preceding
the next word delimiter. If IPOSN already points to a character preceding a delimiter, it is returned
unchanged. If no delimiter is found, IPOSN is returned pointing to the end of the string, and
STATUS is returned set.

STATUS = INTEGER (Given and Returned)
The status value: if this value is not SAI__OK on entry, the routine returns without action; if the next
word delimiter is not found before the end of the string, STATUS is returned set to CHR__EOSNT.
Note: The CHR__EOSNT symbolic constant is defined in the CHR_ERR include file.

33 CHR_FIWS SUN/40.6 —Routine Descriptions

CHR_FIWS
Find the start of the next word within a string

Description:
Find the start of the next word, signified by the character not being a word delimiter, i.e. SPACE,
TAB, or COMMA. Note that the end of the current word is not found before looking for the start of
the next. This routine is expected to be used in conjunction with CHR_FIWE.

Invocation:
CALL CHR_FIWS(STRING, IPOSN, STATUS)

Arguments:

STRING = CHARACTER ∗ (∗) (Given)
The string to be searched.

IPOSN = INTEGER (Given and Returned)
The given value is the character position within the string at which searching is to start. If IPOSN is
less than 1, the search starts at position 1. The returned value is the character position at which the
next word starts. If IPOSN already points to a character within a word, it is returned unchanged. If
no word is found, IPOSN is returned pointing to the end of the string, and STATUS is returned set.

STATUS = INTEGER (Given and Returned)
The status value: if this value is not SAI__OK on entry, the routine returns without action; if no
word is found, STATUS is returned set to CHR__WNOTF. Note: The CHR__WNOTF symbolic
constant is defined in the CHR_ERR include file.

SUN/40.6 —Routine Descriptions 34 CHR_FPARX

CHR_FPARX
Find a parenthesised expression in a character string

Description:
The routine searches the string STR to identify a sub-string containing a parenthesised expression
and returns the character positions of the opening and closing parentheses in the F and L arguments.
Allowance is made for nested parentheses. If a parenthesised expression was not found, then the
returned value of F will be greater than the returned value of L.

Invocation:
CALL CHR_FPARX(STR, OPPAR, CLPAR, F, L)

Arguments:

STR = CHARACTER ∗ (∗) (Given)
String to be searched.

OPPAR = CHARACTER ∗ (1) (Given)
The opening parenthesis character.

CLPAR = CHARACTER ∗ (1) (Given)
The closing parenthesis character.

F = INTEGER (Returned)
Character position of the opening parenthesis.

L = INTEGER (Returned)
Character position of the closing parenthesis.

35 CHR_HTOI SUN/40.6 —Routine Descriptions

CHR_HTOI
Read an INTEGER value from a hexadecimal string

Description:
The given hexadecimal string is decoded into an INTEGER value.

Invocation:
CALL CHR_HTOI(STRING, IVALUE, STATUS)

Arguments:

STRING = CHARACTER ∗ (∗) (Given)
String to be decoded.

IVALUE = INTEGER (Returned)
Value decoded from the given string.

STATUS = INTEGER (Given and Returned)
The status value. If this value is not SAI__OK on input, the routine returns without action. If the
routine fails to complete successfully, STATUS is returned set to SAI__ERROR.

Notes:
This subroutine assumes a 32-bit, twos-complement representation of an INTEGER.

SUN/40.6 —Routine Descriptions 36 CHR_IACHR

CHR_IACHR
Return the ASCII value for the given character

Description:
The given character, encoded using the machine’s character set, is converted to an integer indicating
its position in the ASCII character set. If no such character exists, zero is returned.

Invocation:
RESULT = CHR_IACHR(CVALUE)

Arguments:

CVALUE = CHARACTER ∗ 1 (Given)
The character to be converted to its position within the ASCII character set.

Returned Value:

CHR_IACHR = INTEGER
An integer position within the ASCII character set.

37 CHR_INDEX SUN/40.6 —Routine Descriptions

CHR_INDEX
Return the index of a substring in a string

Description:
Find the position of a substring within a given string. If no substring is found, the value zero is
returned.

Invocation:
RESULT = CHR_INDEX(STRING, SUBSTR)

Arguments:

STRING = CHARACTER ∗ (∗) (Given)
The string to be searched.

SUBSTR = CHARACTER ∗ (∗) (Given)
The substring to be used in the search.

Returned Value:

CHR_INDEX = INTEGER
The position of SUBSTR within STRING.

Notes:
This routine is OBSOLETE. It exists for historical reasons. Its function is identical to the Fortran
intrinsic function INDEX. It is recommended that the INDEX intrinsic function be called directly.

SUN/40.6 —Routine Descriptions 38 CHR_INSET

CHR_INSET
Return whether a string is a member of a given set

Description:
The character string is compared with each of the values given in the given set. The strings in the
set can be any length and can differ in length throughout the set. Each value is separated by a
comma. Upper and lowercase are treated as being equivalent and trailing blanks are ignored.

Invocation:
RESULT = CHR_INSET(SET, STRING)

Arguments:

SET = CHARACTER ∗ (∗) (Given)
The set of character values. It takes the form ’string1,string2,.......,stringN’ where each of the
substring values from string1 to stringN can be of different lengths.

STRING = CHARACTER ∗ (∗) (Given)
The character string to be checked for membership of the set.

Returned Value:

CHR_INSET = LOGICAL
Returns .TRUE. if the character string is a member of the given set, returns .FALSE. otherwise.

39 CHR_ISALF SUN/40.6 —Routine Descriptions

CHR_ISALF
Return whether a character is alphabetic

Description:
The given character is tested for being alphabetic, i.e. A - Z or a - z.

Invocation:
RESULT = CHR_ISALF(CVALUE)

Arguments:

CVALUE = CHARACTER (Given)
The character to be tested.

Returned Value:

CHR_ISALF = LOGICAL
Returns .TRUE. if the given character is alphabetic, returns .FALSE. otherwise.

SUN/40.6 —Routine Descriptions 40 CHR_ISALM

CHR_ISALM
Return whether a character is alphanumeric

Description:
Determine whether a character is alphanumeric, i.e. A - Z, a - z, 0 - 9 or _. Note that this routine
treats the underscore character as an alphanumeric character.

Invocation:
RESULT = CHR_ISALM(CVALUE)

Arguments:

CVALUE = CHARACTER (Given)
The character to be tested.

Returned Value:

CHR_ISALM = LOGICAL
Returns .TRUE. if the given character is alphanumeric, returns .FALSE. otherwise.

41 CHR_ISDIG SUN/40.6 —Routine Descriptions

CHR_ISDIG
Return whether a character is a digit

Description:
Determine whether the given character is a digit, i.e. 0 - 9.

Invocation:
RESULT = CHR_ISDIG(CVALUE)

Arguments:

CVALUE = CHARACTER (Given)
The character to be tested.

Returned Value:

CHR_ISDIG = LOGICAL
Returns .TRUE. if the given character is a digit, returns .FALSE. otherwise.

SUN/40.6 —Routine Descriptions 42 CHR_ISNAM

CHR_ISNAM
Return whether a string is a valid name

Description:
Determine whether the given string is a valid name: i.e. whether it starts with an alphabetic
character and continues with alphanumeric or underscore characters.

Invocation:
RESULT = CHR_ISNAM(STRING)

Arguments:

STRING = CHARACTER ∗ (∗) (Given)
The string to be tested.

Returned Value:

CHR_ISNAM = LOGICAL
Returns .TRUE. if the given string is a valid name, returns .FALSE. otherwise.

43 CHR_ITOB SUN/40.6 —Routine Descriptions

CHR_ITOB
Write an INTEGER value into a binary string

Description:
Encode an INTEGER value into a binary string. The result is right-justified in the returned string.
In the event of an error, ’∗’s are written to the string.

Invocation:
CALL CHR_ITOB(IVALUE, STRING, STATUS)

Arguments:

IVALUE = INTEGER (Given)
Value to be encoded.

STRING = CHARACTER ∗ (∗) (Returned)
Binary string encoded from the given value.

Notes:
This subroutine assumes a 32-bit, twos-complement representation of an INTEGER.

SUN/40.6 —Routine Descriptions 44 CHR_ITOC

CHR_ITOC
Encode an INTEGER value as a string

Description:
Encode an integer value as a (decimal) character string, using as concise a format as possible, and
return the number of characters used. In the event of an error, ’∗’s will be written into to the string.

Invocation:
CALL CHR_ITOC(IVALUE, STRING, NCHAR)

Arguments:

IVALUE = INTEGER (Given)
The value to be encoded.

STRING = CHARACTER ∗ (∗) (Returned)
The string into which the integer value is encoded.

NCHAR = INTEGER (Returned)
The field width used in encoding the value.

45 CHR_ITOH SUN/40.6 —Routine Descriptions

CHR_ITOH
Write a hexadecimal string from an INTEGER value

Description:
Encode an INTEGER value into a hexadecimal string using the machine’s character set. The result
is right-justified in the returned string. In the event of an error, ’∗’s are written to the string.

Invocation:
CALL CHR_ITOH(IVALUE, STRING, STATUS)

Arguments:

IVALUE = INTEGER (Given)
Value to be encoded.

STRING = CHARACTER ∗ (∗) (Returned)
Hexadecimal string encoded from the given value.

STATUS = INTEGER (Given and Returned)
The status value. If this value is not SAI__OK on input, the routine returns without action. If the
routine fails to complete successfully, STATUS is returned set to SAI__ERROR.

Notes:
This subroutine assumes a 32-bit, twos-complement representation of an INTEGER.

SUN/40.6 —Routine Descriptions 46 CHR_ITOO

CHR_ITOO
Write an octal string from an INTEGER value

Description:
Encode an INTEGER value into an octal string using the host machine’s character set. The result is
right-justified in the returned string. In the event of an error, ’∗’s are written to the string.

Invocation:
CALL CHR_ITOO(IVALUE, STRING, STATUS)

Arguments:

IVALUE = INTEGER (Given)
Value to be encoded.

STRING = CHARACTER ∗ (∗) (Returned)
Octal string encoded from the given value.

Notes:
This subroutine assumes a 32-bit, twos complement representation of an INTEGER.

47 CHR_LASTO SUN/40.6 —Routine Descriptions

CHR_LASTO
Locates the last occurence of CVAL in STRING

Description:
The routine locates the last occurence of the single character CVAL in STRING. If an occurence is
not located then IAT is returned as 0.

Invocation:
CALL CHR_LASTO(STRING, CVAL, IAT)

Arguments:

STRING = CHARACTER ∗ (∗) (Given)
String to be searched for occurences of CVAL.

CVAL = CHARACTER ∗ (1) (Given)
Character whose last occurence is to be located.

IAT = INTEGER (Returned)
Position within STRING at which last occurence of CVAL is located. Set to 0 if the character is not
found.

SUN/40.6 —Routine Descriptions 48 CHR_LCASE

CHR_LCASE
Convert a string to lowercase

Description:
The characters in the string are all converted to lowercase in situ.

Invocation:
CALL CHR_LCASE(STRING)

Arguments:

STRING = CHARACTER ∗ (∗) (Given and Returned)
The string to be converted to lowercase.

49 CHR_LDBLK SUN/40.6 —Routine Descriptions

CHR_LDBLK
Remove any leading blanks from a string

Description:
Remove any leading blanks from the character string. The remaining characters are moved to the
left to eliminate the resulting empty space, and the end of the string is filled with blanks.

Invocation:
CALL CHR_LDBLK(STRING)

Arguments:

STRING = CHARACTER ∗ (∗) (Given and Returned)
The string from which the leading blanks are to be removed.

SUN/40.6 —Routine Descriptions 50 CHR_LEN

CHR_LEN
Return the length of a string, ignoring trailing blanks

Description:
Find length of string, ignoring trailing blanks.

Invocation:
RESULT = CHR_LEN(STRING)

Arguments:

STRING = CHARACTER ∗ (∗) (Given)
The string whose length is to be determined.

Returned Value:

CHR_LEN = INTEGER
Returns the used length of the string.

51 CHR_LINBR SUN/40.6 —Routine Descriptions

CHR_LINBR
Break a line of text into a sequence of shorter lines

Description:
Break a long line of text into a sequence of shorter lines, making the breaks between words at
spaces if possible. The maximum length of an output line is determined by the size of the character
variable supplied to contain it. This routine should be called repeatedly to generate successive
output lines from a single long input line. Initially, the context argument IPOSN should be set to
zero; it will be updated after each call, ready to generate the next output line. A value of zero is
returned for IPOSN when there are no more output lines. Any unprintable characters (e.g. tabs)
are treated as if they were blanks for the purpose of identifying line-breaks.

Invocation:
CALL CHR_LINBR(STR1, IPOSN, STR2)

Arguments:

STR1 = CHARACTER ∗ (∗) (Given)
The line of text to be broken into shorter lines. Leading blanks are ignored.

IPOSN = INTEGER (Given and Returned)
On entry, this argument specifies the character position in STR1 from which to start generating the
next returned line. If a value less than 1 is given, then 1 will be used.
On exit, this argument is set to one more than the position in STR1 of the last non-blank character
which appears in the returned line STR2 (i.e. the position at which generation of the next returned
line should begin). If STR2 is blank because there are no more characters to process, then IPOSN is
returned set to zero.

STR2 = CHARACTER ∗ (∗) (Returned)
The returned line, left justified. The length of this argument determines the maximum length of the
returned line.

SUN/40.6 —Routine Descriptions 52 CHR_LOWER

CHR_LOWER
Return the lowercase equivalent of a character

Description:
If the given character is uppercase, the lowercase equivalent is returned, otherwise the character
will be returned unchanged.

Invocation:
RESULT = CHR_LOWER(CVALUE)

Arguments:

CVALUE = CHARACTER ∗ 1 (Given)
The character to be converted.

Returned Value:

CHR_LOWER = CHARACTER ∗ 1 (Returned)
Lowercase equivalent of the given character, if the given character is an uppercase letter; otherwise
the character is returned unchanged.

53 CHR_LTOC SUN/40.6 —Routine Descriptions

CHR_LTOC
Encode a LOGICAL value as a string

Description:
Encode the given LOGICAL value as one of the character strings ’TRUE’ or ’FALSE’.

Invocation:
CALL CHR_LTOC(LVALUE, STRING, NCHAR)

Arguments:

LVALUE = LOGICAL (Given)
The value to be encoded.

STRING = CHARACTER ∗ (∗) (Returned)
The string into which the value is to be encoded.

NCHAR = INTEGER (Returned)
The field width used in encoding the value.

SUN/40.6 —Routine Descriptions 54 CHR_MOVE

CHR_MOVE
Move one string into another

Description:
The string STR1, or as much of it as there is room for, is copied into STR2 beginning at position 1.

Invocation:
CALL CHR_MOVE(STR1, STR2)

Arguments:

STR1 = CHARACTER ∗ (∗) (Given)
The given string.

STR2 = CHARACTER ∗ (∗) (Returned)
The returned string.

Notes:
This routine is OBSOLETE. It exists for historical reasons. Its function is identical to a Fortran assign-
ment statement. It is recommended that an assignment statement be used instead of CHR_MOVE.

55 CHR_MTOA SUN/40.6 —Routine Descriptions

CHR_MTOA
Translate a string from the machine’s characters set to ASCII

Description:
The string STR1, encoded in the host machine’s character set, is returned in STR2 translated into a
form which can be written and subsequently read correctly by a machine which uses the ASCII
character set.

Invocation:
CALL CHR_MTOA(STR1, STR2)

Arguments:

STR1 = CHARACTER ∗ (∗) (Given)
A string represented by the host machine’s character set.

STR2 = CHARACTER ∗ (∗) (Returned)
A string represented by the ASCII character set. If STR2 is shorter than STR1, the translated string
will be truncated; if STR2 is longer than STR1, STR2 will be padded with blanks beyond the
translated string.

SUN/40.6 —Routine Descriptions 56 CHR_MTOE

CHR_MTOE
Translate a string from the machine’s character set to EBCDIC

Description:
The string STR1, which is a Fortran 77 CHARACTER string, is returned in STR2 translated into a
form which can be written and subsequently read correctly by a machine which uses the EBCDIC
character set.
Any characters which are not represented in the EBCDIC character set are translated to EBCDIC
SPACE. Non-printable characters are translated where possible.

Invocation:
CALL CHR_MTOE(STR1, STR2)

Arguments:

STR1 = CHARACTER ∗ (∗) (Given)
The Fortran 77 character string.

STR2 = CHARACTER ∗ (∗) (Returned)
A character string which may be written and subsequently read correctly by a machine which
uses the EBCDIC character set to represent characters in Fortran. If STR2 is shorter than STR1, the
translated string will be truncated; if STR2 is longer than STR1, STR2 will be padded with blanks
beyond the translated string.

System-specific :
This subroutine has been implemented for machines which use the ASCII character set.

57 CHR_NTH SUN/40.6 —Routine Descriptions

CHR_NTH
Return the two-character ordinal abbreviation for a specified integer

Description:
Return the two character ordinal abbreviation (i.e. st, nd, rd, th) appropriate for the given integer
value.

Invocation:
RESULT = CHR_NTH(IVALUE)

Arguments:

IVALUE = INTEGER (Given)
The integer for which the abbreviation is required.

Returned Value:

CHR_NTH = CHARACTER ∗ 2
The appropriate two character abbreviation for the given integer value.

SUN/40.6 —Routine Descriptions 58 CHR_OTOI

CHR_OTOI
Read an INTEGER value from an octal string

Description:
The given octal string is decoded into an INTEGER value.

Invocation:
CALL CHR_OTOI(STRING, IVALUE, STATUS)

Arguments:

STRING = CHARACTER ∗ (∗) (Given)
String to be decoded.

IVALUE = INTEGER (Returned)
Value decoded from the given string.

STATUS = INTEGER (Given and Returned)
The status value. If this value is not SAI__OK on input, the routine returns without action. If the
routine fails to complete successfully, STATUS is returned set to SAI__ERROR.

Notes:
This subroutine assumes a 32-bit, twos-complement representation of an INTEGER.

59 CHR_PFORM SUN/40.6 —Routine Descriptions

CHR_PFORM
Reformat a paragraph to a new width

Description:
This subroutine is called repeatedly to reformat the given paragraph to a new width (given by
the declared length of the returned character variable). The output may be optionally justified to
the right margin (i.e. the end of the returned character variable). This routine should be called
repeatedly to generate successive returned lines from the given paragraph array. Initially, the
context argument IPOSN should be set to zero; it will be updated after each call, ready to generate
the next output line. A value of zero is returned for IPOSN when there are no more lines to
return. Any unprintable characters (e.g. tabs) are treated as if they were spaces for the purpose of
generating line-breaks.

Invocation:
CALL CHR_PFORM(MXPAR, PARRAY, JUSTFY, IPOSN, STRING)

Arguments:

MXPAR = INTEGER (Given)
The maximum length of the given paragraph array, PARRAY.

PARRAY(MXPAR) = CHARACTER ∗ (∗) (Given)
The character array which contains the paragraph text to be reformatted, one line per array element.
Leading blanks are ignored. A line-break is interpreted as the start of a new word.

JUSTFY = LOGICAL (Given)
The right justification flag: if this is given as .TRUE., the text is returned right justified; otherwise
the text is returned with a ragged right margin.

IPOSN = INTEGER (Given and Returned)
On entry, this argument specifies the character position in PARRAY from which to start generating
the next returned line. It is given as the number of characters from the start of the first character in
the first element in PARRAY. If a value less than 1 is used, then 1 will be used.
On exit, this argument is set to one more than the character offset of the start of PARRAY of the
last non-blank character which appears in the returned line STRING (i.e. the position at which
the generation of the next output line should start). If STRING is blank because there are no more
characters to process, then IPOSN is returned set to zero.

STRING = CHARACTER ∗ (∗) (Returned)
The returned line of text in the paragraph, left justified. The length of this argument defines the
maximum length of the returned paragraph line.

SUN/40.6 —Routine Descriptions 60 CHR_PREFX

CHR_PREFX
Prefix a string with a substring

Description:
The substring STR1 is prefixed to the string STR2, moving the string STR2 along to make room.
The given string in STR2 may be truncated by adding the prefix. The final length of the string STR2,
ignoring trailing blanks, is returned in LEN2.

Invocation:
CALL CHR_PREFX(STR1, STR2, LEN2)

Arguments:

STR1 = CHARACTER ∗ (∗) (Given)
The prefix string.

STR2 = CHARACTER ∗ (∗) (Given and Returned)
The string to be prefixed.

LEN2 = INTEGER (Returned)
The resultant length of the string STR2, ignoring trailing blanks.

61 CHR_PUTC SUN/40.6 —Routine Descriptions

CHR_PUTC
Put a CHARACTER string into another at a given position

Description:
The string STR1 (or as much of it as there is room for) is copied into the part of STR2 beginning at
position IPOSN+1. IPOSN is updated to indicate the end position of the copy of STR1 within STR2
after this operation. If no copying is done, IPOSN is returned unchanged. The sizes of STR1 and
STR2 are based on the declared Fortran 77 size given by the intrinsic function LEN.

Invocation:
CALL CHR_PUTC(STR1, STR2, IPOSN)

Arguments:

STR1 = CHARACTER ∗ (∗) (Given)
The string to be copied.

STR2 = CHARACTER ∗ (∗) (Given and Returned)
The string into which STR1 is to be copied.

IPOSN = INTEGER (Given and Returned)
The position pointer within STR2.

SUN/40.6 —Routine Descriptions 62 CHR_PUTD

CHR_PUTD
Put a DOUBLE PRECISION value into a string at a given position

Description:
The DOUBLE PRECISION value is encoded into a concise string which is then copied into the given
string beginning at position IPOSN+1. IPOSN is returned updated to indicate the end position of
the encoded number within STRING. This is a combination of CHR_DTOC and CHR_PUTC.

Invocation:
CALL CHR_PUTD(DVALUE, STRING, IPOSN)

Arguments:

DVALUE = DOUBLE PRECISION (Given)
The value to be encoded into the string.

STRING = CHARACTER ∗ (∗) (Given and Returned)
The string into which DVALUE is to be copied.

IPOSN = INTEGER (Given and Returned)
The position pointer within STRING.

63 CHR_PUTI SUN/40.6 —Routine Descriptions

CHR_PUTI
Put an INTEGER value into a string at a given position

Description:
The INTEGER value is encoded into a concise string which is then copied into the given string
beginning at position IPOSN+1. IPOSN is returned updated to indicate the end position of the
encoded number within STRING. This is a combination of CHR_ITOC and CHR_PUTC.

Invocation:
CALL CHR_PUTI(IVALUE, STRING, IPOSN)

Arguments:

IVALUE = INTEGER (Given)
The value to be encoded into the string.

STRING = CHARACTER ∗ (∗) (Given and Returned)
The string into which IVALUE is to be copied.

IPOSN = INTEGER (Given and Returned)
The position pointer within STRING.

SUN/40.6 —Routine Descriptions 64 CHR_PUTL

CHR_PUTL
Put a LOGICAL value into a string at a given position

Description:
The LOGICAL value is encoded into ’T’ or ’F’ which is then copied into the given string beginning
at position IPOSN+1. IPOSN is is returned updated to indicate the end position of the encoded
logical value within STRING.

Invocation:
CALL CHR_PUTL(LVALUE, STRING, IPOSN)

Arguments:

LVALUE = LOGICAL (Given)
The LOGICAL value to be encoded into the string.

STRING = CHARACTER ∗ (∗) (Given and Returned)
The string into which LVALUE is to be copied.

IPOSN = INTEGER (Given and Returned)
The position pointer within STRING.

65 CHR_PUTR SUN/40.6 —Routine Descriptions

CHR_PUTR
Put a REAL value into a string at a given position

Description:
The REAL value is encoded into a concise string which is then copied into the given string beginning
at position IPOSN+1. IPOSN is returned updated to indicate the end position of the encoded
number within STRING. This is a combination of CHR_RTOC and CHR_PUTC.

Invocation:
CALL CHR_PUTR(RVALUE, STRING, IPOSN)

Arguments:

RVALUE = REAL (Given)
The value to be encoded into the string.

STRING = CHARACTER ∗ (∗) (Given and Returned)
The string into which DVALUE is to be copied.

IPOSN = INTEGER (Given and Returned)
The position pointer within STRING.

SUN/40.6 —Routine Descriptions 66 CHR_RJUST

CHR_RJUST
Right-justify a string

Description:
The given string is right-justified by filling out the spaces between words with additional blank
space. The right margin is taken as the declared length of the given string. Unprintable characters
are interpreted as blanks.

Invocation:
CALL CHR_RJUST(STRING)

Arguments:

STRING = CHARACTER ∗ (∗) (Given and Returned)
The string to be right-justified and returned.

67 CHR_RMBLK SUN/40.6 —Routine Descriptions

CHR_RMBLK
Remove all blanks from a string

Description:
All leading and embedded blanks in the string are removed. The remaining characters are moved
to the left to eliminate the resulting empty space, and the end of the string is filled with blanks.

Invocation:
CALL CHR_RMBLK(STRING)

Arguments:

STRING = CHARACTER ∗ (∗) (Given and Returned)
The string from which all leading and embedded blanks are removed.

SUN/40.6 —Routine Descriptions 68 CHR_RMCHR

CHR_RMCHR
Remove all specified characters from a string

Description:
Remove a specified set of characters from a string in situ. The remaining characters are moved to
the left to eliminate the resulting empty space, and the end of the string is filled with blanks.

Invocation:
CALL CHR_RMCHR(CHARS, STRING)

Arguments:

CHARS = CHARACTER ∗ (∗) (Given)
A string specifying all the characters which are to be removed.

STRING = CHARACTER ∗ (∗) (Given and Returned)
The string from which the characters are removed.

69 CHR_RTOAN SUN/40.6 —Routine Descriptions

CHR_RTOAN
Write a REAL value into a string as hr/deg:min:sec

Description:
Format a REAL value as hours/degrees:minutes:seconds and write it into a character string. This
routine is for writing angular measures into a character string in a format suitable for presentation
to an astronomer.
If the absolute value of the number to be written exceeds a predefined maximum a conversion
is not attempted, but the number is written as a real number in Fortran ’exponential’ format and
a couple of question marks are appended to its end. This prevents silly results when very large
numbers are input. The variable UNITS controls the maximum permitted value for the conversion
to be carried out.
The value is written into the part of the string beginning at position IPOSN+1 and IPOSN is
returned updated to the position of the end of the encoded angle in STRING.

Invocation:
CALL CHR_RTOAN(RVALUE, UNITS, STRING, IPOSN)

Arguments:

RVALUE = REAL (Given)
The value to be encoded into the string. This value should represent an angular measure.

UNITS = CHARACTER ∗ (∗) (Given)
This string controls the maximum value which will be formatted as hr/deg:min:sec: if UNITS =
’HOURS’, the maximum permitted value is 24.0; if UNITS = ’DEGREES’, the maximum permitted
is 360.0. In all other cases the maximum is 1000.0.

STRING = CHARACTER ∗ (∗) (Given and Returned)
The string into which RVALUE is written.

IPOSN = INTEGER (Given and Returned)
Given as the last element in STRING before the beginning of the encoded angle. Returned as the
element in STRING corresponding to the end of the encoded angle.

SUN/40.6 —Routine Descriptions 70 CHR_RTOC

CHR_RTOC
Encode a REAL value as a string

Description:
Encode a REAL value as a character string, using as concise a format as possible, and return the
number of characters used. In the event of an error, ’∗’s are written to the string.

Invocation:
CALL CHR_RTOC(RVALUE, STRING, NCHAR)

Arguments:

RVALUE = REAL (Given)
The value to be encoded.

STRING = CHARACTER ∗ (∗) (Returned)
The string into which the value is to be encoded.

NCHAR = INTEGER (Returned)
The field width used in encoding the value.

71 CHR_SCOMP SUN/40.6 —Routine Descriptions

CHR_SCOMP
Compare two character strings using the ASCII character set

Description:
The first string is compared with the second using the ASCII character set, giving precedence to the
left hand side of the string. If the first string is less than or equal to the second, the value .TRUE. is
returned; otherwise the value .FALSE. is returned.

Invocation:
RESULT = CHR_SCOMP(STR1, STR2)

Arguments:

STR1 = CHARACTER ∗ (∗) (Given)
The first character string.

STR2 = CHARACTER ∗ (∗) (Given)
The second character string.

Returned Value:

CHR_SCOMP = LOGICAL
Whether the first character string is less than or equal to the second, using the ASCII character set.

SUN/40.6 —Routine Descriptions 72 CHR_SIMLR

CHR_SIMLR
Return whether two strings are equal, apart from case

Description:
Determine whether two strings are the same, ignoring distinctions between upper and lowercase
letters. Their lengths must be identical after removing trailing blanks.

Invocation:
RESULT = CHR_SIMLR(STR1, STR2)

Arguments:

STR1 = CHARACTER ∗ (∗) (Given)
The first string.

STR2 = CHARACTER ∗ (∗) (Given)
The second string.

Returned Value:

CHR_SIMLR = LOGICAL
Returned as .TRUE. if the two strings are the same ignoring case distinctions; otherwise .FALSE.

73 CHR_SIZE SUN/40.6 —Routine Descriptions

CHR_SIZE
Return the declared size of a string

Description:
Give the declared size of a Fortran 77 character string variable, including trailing blanks.

Invocation:
RESULT = CHR_SIZE(STRING)

Arguments:

STRING = CHARACTER ∗ (∗) (Given)
The character string of whose length is determined.

Returned Value:

CHR_SIZE = INTEGER
Returns the declared size of the string.

Notes:
This routine is OBSOLETE. It exists for historical reasons. Its function is identical to the Fortran 77
intrinsic function LEN. It is recommended that the intrinsic function LEN be called directly.

SUN/40.6 —Routine Descriptions 74 CHR_SKCHR

CHR_SKCHR
Skip over all specified characters in a string

Description:
Increment a character pointer, IPOSN, either forward or backward through a string, until the
character pointed to is not one of a specified set of characters. The direction of the search is given
by the argument FORWD. If no such character position exists (i.e all remaining characters in the
string are members of the specified set), the pointer is returned set to one more than the length of
the string if the search is in the forward direction, or zero if the search is in the reverse direction. If
the initial value of IPOSN does not point at one of the characters in the string, then the routine will
return without action.

Invocation:
CALL CHR_SKCHR(CHARS, STRING, FORWD, IPOSN)

Arguments:

CHARS = CHARACTER ∗ (∗) (Given)
A string consisting of the set of characters to be skipped.

STRING = CHARACTER ∗ (∗) (Given)
The string to be searched.

FORWD = LOGICAL (Given)
The search direction: if .TRUE. then proceed through the string in a forward direction, otherwise
work backwards through the string.

IPOSN = INTEGER (Given and Returned)
The character pointer.

75 CHR_SORT SUN/40.6 —Routine Descriptions

CHR_SORT
Sort an array of character variables into alphabetical order

Description:
Sort an array of character variables into alphabetical order using the collating sequence provided
by the routine CHR_SCOMP. After the sort, a search is made to remove any values which occur
more than once. The total number of unique values is returned.

Invocation:
CALL CHR_SORT(CHR_SCOMP, MXARY, ARRAY, NSORT)

Arguments:

CHR_SCOMP = LOGICAL FUNCTION (Given)
An external function which compares two character strings and returns whether the first string is
less than the second.

MXARY = INTEGER (Given)
The number of character values to sort.

ARRAY(MXARY) = CHARACTER ∗ (∗) (Given and Returned)
The array of character values to be sorted.

NSORT = INTEGER (Returned)
The number of unique character values returned.

Notes:
To use this subroutine it is necessary to declare the function CHR_SCOMP, or its equivalent, to be
EXTERNAL in the calling routine.

SUN/40.6 —Routine Descriptions 76 CHR_SWAP

CHR_SWAP
Swap two single-character variables

Description:
Exchange the values of two single-character variables.

Invocation:
CALL CHR_SWAP(CHAR1, CHAR2)

Arguments:

CHAR1 = CHARACTER ∗ 1 (Given and Returned)
The first character.

CHAR2 = CHARACTER ∗ 1 (Given and Returned)
The second character.

77 CHR_TERM SUN/40.6 —Routine Descriptions

CHR_TERM
Terminate a string by padding out with blanks

Description:
The given string, STRING, is terminated to a length of LENGTH characters by filling the remainder
of its declared length with blanks.

Invocation:
CALL CHR_TERM(LENGTH, STRING)

Arguments:

LENGTH = INTEGER (Given)
The required length for the string: it must be positive and not greater than the declared length of
the string.

STRING = CHARACTER ∗ (∗) (Given and Returned)
The string to be terminated.

SUN/40.6 —Routine Descriptions 78 CHR_TOCHR

CHR_TOCHR
Skip to the next specified character in a string

Description:
Increment a character pointer, IPOSN, either forward or backward through a string, until the
character pointed to is one of a specified set of characters. The direction of the search is given by
the argument FORWD. If no such character position exists (i.e. none of the remaining characters in
the string are members of the specified set), the pointer is returned set to one more than the length
of the string if the search is in the forward direction, or zero if the search is in the reverse direction.
If the initial value of IPOSN does not point at one of the characters in the string, then the routine
will return without action.

Invocation:
CALL CHR_TOCHR(CHARS, STRING, FORWD, IPOSN)

Arguments:

CHARS = CHARACTER ∗ (∗) (Given)
A string consisting of the set of characters to be searched for.

STRING = CHARACTER ∗ (∗) (Given)
The string to be searched.

FORWD = LOGICAL (Given)
The search direction: if .TRUE. then proceed through the string in a forward direction, otherwise
work backwards through the string.

IPOSN = INTEGER (Given and Returned)
The character pointer.

79 CHR_TRCHR SUN/40.6 —Routine Descriptions

CHR_TRCHR
Translate the specified characters in a string

Description:
Translate a specified set of characters within a string. The character translation is controlled by the
translation table given by the character strings FROM and TO. Any characters not appearing in the
translation table are left unchanged. If the status is set on entry, no action is taken. If the strings
FROM and TO are unequal in length, STATUS is returned set to SAI__ERROR.

Invocation:
CALL CHR_TRCHR(FROM, TO, STRING, STATUS)

Arguments:

FROM = CHARACTER ∗ (∗) (Given)
A string specifying the characters to be translated.

TO = CHARACTER ∗ (∗) (Given)
A string specifying the translation values for each of the characters in the FROM argument. The
lengths of the FROM and TO arguments must be the same.

STRING = CHARACTER ∗ (∗) (Given and Returned)
The string to be translated. Any character matching one of the characters specified in the FROM
argument is converted to the corresponding character specified in the TO argument. All other
characters are left unchanged.

STATUS = INTEGER (Given and Returned)
The global status: returned set to SAI__ERROR if FROM and TO have unequal lengths.

SUN/40.6 —Routine Descriptions 80 CHR_TRUNC

CHR_TRUNC
Truncate a string at a given delimiter

Description:
The given string is truncated at the first occurrence of the given delimiter character. The delimiter
character and all subsequent characters are replaced by blanks. If no delimiter character is found
in the string, no truncation takes place. This routine is effectively a combination of INDEX and
CHR_TERM.

Invocation:
CALL CHR_TRUNC(DELIM, STRING)

Arguments:

DELIM = CHARACTER ∗ 1 (Given)
The truncation delimiter character.

STRING = CHARACTER ∗ (∗) (Given and Returned)
The string to be truncated. All characters from, and including, the first occurrence of DELIM will
be replaced with blanks.

81 CHR_UCASE SUN/40.6 —Routine Descriptions

CHR_UCASE
Convert a string to uppercase

Description:
The characters in the string are all converted to uppercase in situ.

Invocation:
CALL CHR_UCASE(STRING)

Arguments:

STRING = CHARACTER ∗ (∗) (Given and Returned)
The string to be converted to uppercase.

SUN/40.6 —Routine Descriptions 82 CHR_UPPER

CHR_UPPER
Return uppercase equivalent of a character

Description:
If the given character is lowercase, the uppercase equivalent is returned, otherwise the character
will be returned unchanged.

Invocation:
RESULT = CHR_UPPER(CVALUE)

Arguments:

CVALUE = CHARACTER ∗ 1 (Given)
The character to be converted.

Returned Value:

CHR_UPPER = CHARACTER ∗ 1
Uppercase equivalent of the given character, if the given character is a lowercase letter; otherwise
the character is returned unchanged.

83 CHR_WILD SUN/40.6 —Routine Descriptions

CHR_WILD
Return whether a string matches a wild-card pattern

Description:
A candidate string is matched with a another character string containing a pattern of characters
and wild-card characters. The wild-cards used are:
% a single character wild-card; ∗ an arbitrary length string wild-card, including zero length.
There is also a literal escape character ’\’ for use when the characters ’∗’ and ’%’ are to be interpreted
literally within the wild-card pattern.

Invocation:
RESULT = CHR_WILD(STRING, WILDS, MATCH)

Arguments:

STRING = CHARACTER ∗ (∗) (Given)
The candidate string to be matched.

WILDS = CHARACTER ∗ (∗) (Given)
The wild-card pattern to be used in the match.

MATCH = CHARACTER ∗ (∗) (Returned)
The wild-card match: this string must be the same length as STRING. All characters matched
individually are returned as blanks in MATCH, and all characters matched by wild-cards are
returned assigned to the particular wild-cards they matched. If the length of MATCH is less than
that of STRING, then CHR_WILD returns the value .FALSE.

Returned Value:

CHR_WILD = LOGICAL
Whether the two strings match after expanding the wild-card pattern.

SUN/40.6 —C Function Descriptions 84

D C Function Descriptions

D.1 Overview

Equivalent functions written entirely in C are available for the following subset of the CHR
routines. These are provided mainly for use when porting Fortran application code to C.

The C and Fortran implementations are completely independent of each other - no “wrapper”
layer is involved. This is done to avoid efficiency problems caused by the continual copying
of strings between Fortran and C that would be required if the C interface was provided by a
wrapper layer on top of the Fortran coide (or vice versa). The behaviour of C functions is slightly
different to that of the Fortran routines because the two languages index strings in different
ways (C is zero-based, Fortran is one-based). Also C has no equivalent to the Fortran intrinsic
function LEN, and so each C function that returns a string has an extra argument specifying the
length of the buffer reserved for the output string.

85 chrAppnd SUN/40.6 —C Function Descriptions

chrAppnd
Copy one string into another, ignoring trailing blanks

Description:
The string "str1" (or as much of it as there is room for) is copied into the part of "str2"
beginning at position "iposn". "iposn" is updated to indicate the final length of "str2"
after this operation. Trailing blanks in "str1" are ignored.

Invocation:

void chrAppnd(const char ∗str1, char ∗str2, size_t str2_length, size_t ∗iposn
)

Notes:

If the output string is too small to append the entire input string, truncation will occur
and "iposn" will be set to the total length of "str2" (excluding the trailing null).

Parameters

str1
Pointer to a null terminated string holding the string to be copied.

str2
Pointer to a null terminated string holding the string to be updated.

str2_length
The maximum length of the ’ str2’ string. This should include room for the terminating
null.

∗iposn
The used length of the "str2". If "str2" is empty on entry, then this should be supplied
as zero. On exit, the supplied value is incremented by the length of "str1" (ignoring any
trailing spaces).

SUN/40.6 —C Function Descriptions 86 chrClean

chrClean
Remove all unprintable characters from a string

Description:
Replace all unprintable characters in the given string with blanks.

Invocation:

void chrClean(char ∗string)

Parameters

string
Pointer to a null terminated string holding the string to be cleaned.

87 chrCtod SUN/40.6 —C Function Descriptions

chrCtod
Read a double value from a string

Description:
Read a double value from the given character string.

Invocation:

void chrCtod(const char ∗string, double ∗dvalue, int ∗status)

Parameters

string
Pointer to a null terminated string holding the string from which a double value is to be
read.

∗dvalue
Returned holding the resulting double value.

∗status
The status value: if this value is not SAI__OK on input, the function returns without action;
if the function does not complete successfully, "status" is returned set to SAI__ERROR.

SUN/40.6 —C Function Descriptions 88 chrCtoi

chrCtoi
Read an integer value from a string

Description:
Read an integer value from the given character string.

Invocation:

void chrCtoi(const char ∗string, int ∗ivalue, int ∗status)

Parameters

string
Pointer to a null terminated string holding the string from which an integer value is to be
read.

∗ivalue
Returned holding the resulting integer value.

∗status
The status value. If this value is not SAI__OK on input, the function returns without action;
if the function does not complete successfully, "status" is returned set to SAI__ERROR.

89 chrCtor SUN/40.6 —C Function Descriptions

chrCtor
Read a float value from a string

Description:
Read a float value from the given character string.

Invocation:

void chrCtor(const char ∗string, float ∗rvalue, int ∗status)

Parameters

string
Pointer to a null terminated string holding the string from which a float value is to be read.

∗rvalue
Returned holding the resulting float value.

∗status
The status value: if this value is not SAI__OK on input, the function returns without action;
if the function does not complete successfully, "status" is returned set to SAI__ERROR.

SUN/40.6 —C Function Descriptions 90 chrFandl

chrFandl
Find the first and last non-blank characters in a string

Description:
Find the indices of the first and last non-blank characters in the given string. If the string
contains no non-blank characters, the first index is returned set to 1 and last index is
returned set to 0, i.e. "index1" is greater than "index2".

Invocation:

void chrFandl(const char ∗string, size_t ∗index1, size_t ∗index2)

Notes:

• For consistency with the Fortran routine CHR_FANDL, this function only checks
for spaces. Other forms of whitespace characters such as tabs, line-feeds, etc are
considered to be non-blank.

Parameters

string
Pointer to a null terminated string holding the character string.

∗index1
Returned holding the zero-based position of first non-blank character.

∗index2
Returned holding the zero-based position of last non-blank character.

91 chrFill SUN/40.6 —C Function Descriptions

chrFill
Fill a string with a given character

Description:
The given character string is filled with the specified character.

Invocation:

void chrFill(char cvalue, char ∗string, size_t string_length)

Parameters

cvalue
The character specified to fill the string.

string
Pointer to an array in which to return a null terminated string holding the string to be
filled.

string_length
The declared length of the supplied ’ string’ array. This should include room for the
terminating null.

SUN/40.6 —C Function Descriptions 92 chrFparx

chrFparx
Find a parenthesised expression in a character string

Description:
This function searches the string "str" to identify a sub-string containing a parenthesised
expression and returns the character positions of the opening and closing parentheses in
the "f" and "l" arguments. Allowance is made for nested parentheses. If a parenthesised
expression was not found, then the returned value of "f" will be greater than the returned
value of "l".

Invocation:

void chrFparx(const char ∗str, char oppar, char clpar, size_t ∗f, size_t ∗l
)

Parameters

str Pointer to a null terminated string holding the string to be searched.

oppar
The opening parenthesis character.

clpar
The closing parenthesis character.

∗f Returned holding the zero-based character position of the opening parenthesis.

∗l Returned holding the zero-based character position of the closing parenthesis.

93 chrIsalm SUN/40.6 —C Function Descriptions

chrIsalm
Return whether a character is alphanumeric

Description:
Determine whether a character is alphanumeric, i.e. A - Z, a - z, 0 - 9 or _. Note that this
function treats the underscore character as an alphanumeric character.

Invocation:

int chrIsalm(char cvalue)

Returned Value:

Returns non-zero if the given character is alphanumeric,

Parameters

cvalue
The character to be tested.

SUN/40.6 —C Function Descriptions 94 chrIsnam

chrIsnam
Return whether a string is a valid name

Description:
Determine whether the given string is a valid name: i.e. whether it starts with an alphabetic
character and continues with alphanumeric or underscore characters.

Invocation:

int chrIsnam(const char ∗string)

Returned Value:

Returns non-zero if the given string is a valid name, returns

Parameters

string
Pointer to a null terminated string holding the string to be tested.

95 chrItoc SUN/40.6 —C Function Descriptions

chrItoc
Encode an integer value as a string

Description:
Encode an integer value as a (decimal) character string, using as concise a format as
possible, and return the number of characters used. In the event of an error, "∗’ s will be
written into to the string.

Invocation:

void chrItoc(int ivalue, char ∗string, size_t string_length, size_t ∗nchar)

Parameters

ivalue
The value to be encoded.

string
Pointer to an array in which to return a null terminated string holding the string into
which the integer value is encoded.

string_length
The maximum length of the supplied ’ string’ array. This should include room for the
terminating null.

∗nchar
Returned holding the field width used in encoding the value.

SUN/40.6 —C Function Descriptions 96 chrLdblk

chrLdblk
Remove any leading blanks from a string

Description:
Remove any leading blanks from the character string. The remaining characters are moved
to the left to eliminate the resulting empty space, and a terminating null is appended to
the end.

Invocation:

void chrLdblk(char ∗string)

Parameters

string
Pointer to a null terminated string holding the string from which the leading blanks are to
be removed.

97 chrLen SUN/40.6 —C Function Descriptions

chrLen
Return the length of a string, ignoring trailing spaces

Description:
Find length of string, ignoring trailing spaces.

Invocation:

size_t chrLen(const char ∗string)

Returned Value:

Returns the length of the string, not including the

terminating null or any trailing spaces.

Parameters

string
Pointer to a null terminated string holding the string whose length is to be determined.

SUN/40.6 —C Function Descriptions 98 chrPutc

chrPutc
Put a character string into another at a given position

Description:
The string "str1" (or as much of it as there is room for) is copied into the part of "str2"
beginning at position "iposn+1". "iposn" is updated to indicate the end position of the
copy of "str1" within "str2" after this operation. If no copying is done, "iposn" is returned
unchanged.

Invocation:

void chrPutc(const char ∗str1, char ∗str2, size_t str2_length, size_t ∗iposn
)

Parameters

str1
Pointer to a null terminated string holding the string to be copied.

str2
Pointer to a null terminated string holding the string into which "str1" is to be copied.

str2_length
The declared length of the supplied ’ str2’ array. This should include room for the
terminating null.

∗iposn
The zero-based position pointer within "str2".

99 chrPuti SUN/40.6 —C Function Descriptions

chrPuti
Put an integer value into a string at a given position

Description:
The integer value is encoded into a concise string which is then copied into the given string
beginning at position "iposn+1". "iposn" is returned updated to indicate the end position
of the encoded number within "string". This is a combination of chrItoc and chrPutc.

Invocation:

void chrPuti(int ivalue, char ∗string, size_t string_length, size_t ∗iposn)

Parameters

ivalue
The value to be encoded into the string.

string
Pointer to a null terminated string holding the string into which "ivalue" is to be copied.

string_length
The declared length of the supplied ’ string’ array. This should include room for the
terminating null.

∗iposn
The zero-based position pointer within "string".

SUN/40.6 —C Function Descriptions 100 chrRmblk

chrRmblk
Remove all blanks from a string

Description:
All leading and embedded blanks in the string are removed. The remaining characters
are moved to the left to eliminate the resulting empty space, and a terminating null is
appended to the end of the string.

Invocation:

void chrRmblk(char ∗string)

Parameters

string
Pointer to a null terminated string holding the string from which all leading and embedded
blanks are removed.

101 chrSimlr SUN/40.6 —C Function Descriptions

chrSimlr
Return whether two strings are equal, apart from case

Description:
Determine whether two strings are the same, ignoring distinctions between upper and
lowercase letters. Their lengths must be identical after removing trailing blanks.

Invocation:

int chrSimlr(const char ∗str1, const char ∗str2)

Returned Value:

Returned as non-zero if the two strings are the same

Parameters

str1
Pointer to a null terminated string holding the first string.

str2
Pointer to a null terminated string holding the second string.

SUN/40.6 —C Function Descriptions 102 chrSimlrN

chrSimlrN
Return whether the starts of two strings are equal, apart from case

Description:
Determine whether the first " n" characters of two strings are the same, ignoring distinc-
tions between upper and lowercase letters.

Invocation:

int chrSimlrN(const char ∗str1, const char ∗str2, size_t n)

Returned Value:

Returned as non-zero if the two strings are the same

Parameters

str1
Pointer to a null terminated string holding the first string.

str2
Pointer to a null terminated string holding the second string.

n The number of characters that must match at the start of each string. If the length of either
string is less than " n" , zero will be returned.

103 chrSizetoc SUN/40.6 —C Function Descriptions

chrSizetoc
Encode a size_t value as a string

Description:
Encode a size_t value as a (decimal) character string, using as concise a format as possible,
and return the number of characters used. In the event of an error, " ∗’ s will be written
into to the string.

Invocation:

void chrSizetoc(size_t value, char ∗string, size_t string_length, size_t ∗nchar
)

Parameters

value
The value to be encoded.

string
Pointer to an array in which to return a null terminated string holding the string into
which the integer value is encoded.

string_length
The maximum length of the supplied ’ string’ array. This should include room for the
terminating null.

∗nchar
Returned holding the field width used in encoding the value.

SUN/40.6 —C Function Descriptions 104 chrUcase

chrUcase
Convert a string to uppercase

Description:
The characters in the string are all converted to uppercase in situ.

Invocation:

void chrUcase(char ∗string)

Parameters

string
Pointer to a null terminated string holding the string to be converted to uppercase.

105 SUN/40.6 —Portability

E Portability

E.1 Overview

This section discusses the portability of CHR, including the coding standard adopted for CHR
and a list of those routines which may need to be modified when porting CHR to a new target
machine.

E.2 Coding and porting prerequisites

The standard of Fortran used for the coding of CHR is fundamentally Fortran 77, using the
Starlink Fortran coding conventions described in SGP/16. Several common extensions to the
Fortran 77 standard are used in source code for CHR, they are as follows:

• End-of-line comments using the “!” symbol;

• Symbolic subprogram names may be longer than six characters (but are always shorter
than ten characters);

• Symbolic subprogram names include the “_” symbol;

• Symbolic constant names may be longer than six characters (but are always shorter than
eleven characters);

• Symbolic constant names may include the “_” symbol;

• The full ASCII character set is assumed in character constants.

The CHR library currently has no dependence upon any other package. To use CHR on any
computer system porting effort is required only for those CHR routines which have operating
system dependencies: these routines are listed in the following section.

E.3 Operating system specific routines

Several CHR routines make use of features specific to the operating system or language imple-
mentation. The names of these routines and their purpose are as follows:

CHR_ACHR – Return the character for a given ASCII value.

CHR_ATOK – Return the character for a given ASCII character token.

CHR_ATOM – Translate a string from ASCII to machine’s character set.

CHR_BTOI – Read an INTEGER value from a binary string.

CHR_HTOI – Read an INTEGER value from a hexadecimal string.

CHR_IACHR – Return the ASCII value for a given character.

CHR_ITOB – Encode an INTEGER value as a binary string.

CHR_ITOH – Encode an INTEGER value as a hexadecimal string.

SUN/40.6 —Changes and New Features in Version 2.0 106

CHR_ITOO – Encode an INTEGER value as an octal string.

CHR_LOWER – Return the lower case equivalent of a character.

CHR_MTOA – Translate a string from machine’s character set to ASCII.

CHR_OTOI – Read an integer from an octal string.

CHR_UPPER – Return the upper-case equivalent of a character.

These routines may have to be rewritten specifically for each new operating system and Fortran
implementation.

F Changes and New Features in Version 2.0

F.1 Obsolete routines

Several routines exist in CHR purely for historical reasons. These routines are obsolete and are
only provided by the CHR library because existing Starlink code may depend upon them. They
should not be used in any new software.

CHR_EQUAL – Return whether two strings are equal.

CHR_INDEX – Return the index of a substring within a string.

CHR_MOVE – Move one string into another.

CHR_SIZE – Return the declared length of a string.

F.2 Changes in behaviour of existing routines

CHR_DTOC – The former algorithm has been replaced – this may result in the returned string
being different from that returned from the previous version.

CHR_RTOC – The former algorithm has been replaced – this may result in the returned string
being different from that returned from the previous version.

F.3 New routines

CHR_ABBRV – Return whether two strings are equal apart from case, permitting abbreviation.

CHR_ACHR – Return the character for a given ASCII value.

CHR_ATOK – Return the character for a given ASCII character token.

CHR_ATOM – Translate a string from ASCII to machine’s characters set.

CHR_BTOI – Read an INTEGER value from a binary string.

CHR_DTOAN – Write a DOUBLE PRECISION value into a string as hr/deg:min:sec.

107 F.4 Other changes SUN/40.6 —Changes and New Features in Version 2.2

CHR_FIND – Find the next occurrence of a given substring within a string.

CHR_IACHR – Return the ASCII value for a given character.

CHR_ITOB – Encode an INTEGER value as a binary string.

CHR_ITOH – Encode an INTEGER value as a hexadecimal string.

CHR_ITOO – Encode an INTEGER value as an octal string.

CHR_LINBR – Break a line of text into a sequence of shorter lines.

CHR_MTOA – Translate a string from machine’s characters set to ASCII.

CHR_NTH – Return the two-character abbreviation for a specified integer.

CHR_PFORM – Reformat a paragraph to a new width.

CHR_PREFX – Prefix a string with a substring.

CHR_RJUST – Right-justify a string.

CHR_RMCHR – Remove all specified characters from a string.

CHR_SCOMP – Compare two character strings using the ASCII character set.

CHR_SKCHR – Skip over all specified characters in a string.

CHR_SORT – Sort an array of character strings into alphabetical order.

CHR_TOCHR – Skip to the next specified character in a string.

CHR_TRCHR – Translate the specified characters in a string.

CHR_WILD – Return whether a string matches a wild-card pattern.

F.4 Other changes

CHR_DIR:LOGICAL.COM This file has been renamed CHR_DIR:CHR_DEV.COM.

CHR_DIR:CHRLINK.OPT This file has been renamed CHR_DIR:CHR_LINK.OPT.

G Changes and New Features in Version 2.2

G.1 Changes in behaviour of existing routines

The algorithm used in CHR_RTOC and CHR_DTOC has been changed – this may result in the
returned string being different from that returned from the previous versions.

G.2 Documentation Changes

This document has been modified to remove references to the use of CHR on VMS.

SUN/40.6 —Changes and New Features in Version 3.0 108

H Changes and New Features in Version 3.0

C equivalents for a subset of the Fortran routines have been added to the CHR library to assist
in porting Fortran code to C.

	Introduction
	Error Handling
	Compiling and Linking
	Efficiency Considerations
	Include Files
	Classified List of Routines
	Change case
	Compare strings
	Decode Fortran data types
	Edit strings
	Encode Fortran data types
	Enquire
	Facilitate Portability
	Search strings

	Routine Descriptions
	CHR_ABBRV
	CHR_ACHR
	CHR_APPND
	CHR_ATOK
	CHR_ATOM
	CHR_BTOI
	CHR_CLEAN
	CHR_COPY
	CHR_CTOC
	CHR_CTOD
	CHR_CTOI
	CHR_CTOL
	CHR_CTOR
	CHR_DCWRD
	CHR_DELIM
	CHR_DTOAN
	CHR_DTOC
	CHR_EQUAL
	CHR_ETOM
	CHR_FANDL
	CHR_FILL
	CHR_FIND
	CHR_FIWE
	CHR_FIWS
	CHR_FPARX
	CHR_HTOI
	CHR_IACHR
	CHR_INDEX
	CHR_INSET
	CHR_ISALF
	CHR_ISALM
	CHR_ISDIG
	CHR_ISNAM
	CHR_ITOB
	CHR_ITOC
	CHR_ITOH
	CHR_ITOO
	CHR_LASTO
	CHR_LCASE
	CHR_LDBLK
	CHR_LEN
	CHR_LINBR
	CHR_LOWER
	CHR_LTOC
	CHR_MOVE
	CHR_MTOA
	CHR_MTOE
	CHR_NTH
	CHR_OTOI
	CHR_PFORM
	CHR_PREFX
	CHR_PUTC
	CHR_PUTD
	CHR_PUTI
	CHR_PUTL
	CHR_PUTR
	CHR_RJUST
	CHR_RMBLK
	CHR_RMCHR
	CHR_RTOAN
	CHR_RTOC
	CHR_SCOMP
	CHR_SIMLR
	CHR_SIZE
	CHR_SKCHR
	CHR_SORT
	CHR_SWAP
	CHR_TERM
	CHR_TOCHR
	CHR_TRCHR
	CHR_TRUNC
	CHR_UCASE
	CHR_UPPER
	CHR_WILD

	C Function Descriptions
	Overview
	chrAppnd
	chrClean
	chrCtod
	chrCtoi
	chrCtor
	chrFandl
	chrFill
	chrFparx
	chrIsalm
	chrIsnam
	chrItoc
	chrLdblk
	chrLen
	chrPutc
	chrPuti
	chrRmblk
	chrSimlr
	chrSimlrN
	chrSizetoc
	chrUcase

	Portability
	Overview
	Coding and porting prerequisites
	Operating system specific routines

	Changes and New Features in Version 2.0
	Obsolete routines
	Changes in behaviour of existing routines
	New routines
	Other changes

	Changes and New Features in Version 2.2
	Changes in behaviour of existing routines
	Documentation Changes

	Changes and New Features in Version 3.0

