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Abstract

This document describes how to extend the parallelization of the iterative makemap method for
use on a distributed-memory cluster using the MPI. A prototype demonstrating the algorithm
can be found at github.com/CCATObservatory/mpi-mapmaker-test.
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1 Introduction

The iterative map-maker developed for SMURF [1] is a sophisticated algorithm that is able to
reduce the large amounts of data collected by SCUBA-2 in a reasonable amount of time. The
algorithm measures and removes correlated noise by iteratively solving for sources of noise
along with the sky signal. This is much less computationally intensive than a full generalized
least squares solution (e.g. [2]), which requires careful measurements of noise auto- and cross-
power spectra and inversion of very large matrices. Due to the iterative nature of the algorithm,
however, the full data set must be accessed repeatedly. Since the data rate is high (10s of GB per
hour of observation), reading the full data set (often many hours) from disk is slow. Re-reading
the data on every iteration takes a considerable amount of time, so it is desirable to keep the
data in memory once it has been read in the first time. This limits the amount of data that can be
reduced at a time. Longer observations with data sizes larger than than the available memory
must be reduced in chunks and combined after the fact, if caching and re-reading the data is to
be avoided.

The next generation of submillitre instruments, such as SWCam [3], the short-wavelength
camera for CCAT [4], will have 10 times as many detector elements as SCUBA-2 and will be
sampled at a rate of ∼1 kHz, compared to SCUBA-2’s ∼200 Hz. This increase in data volume by
a factor of ∼50 presents a serious problem for data reduction, both in terms of memory usage
and processing time. Several approaches have been considered to account for this large increase
in data volume:

(1) High-pass filter the time-streams to suppress low-frequency correlated noise. If the
detectors’ filtered noise power spectra are reasonably flat and uncorrelated, the map-
making problem becomes one of simply rebinning (averaging all samples that fall within
a given sky pixel), requiring only one pass through the data. The high-pass filter limits the
angular scales recovered by the mapping process, however; this is fine for maps consisting
of only point sources, but when larger scales are important, this approach will not be
sufficient.

(2) Use machines with large amounts of memory and limit the length of observations that
can be reduced in a single pass. CCAT and SWCam are still several years away, and one
can expect increases in hardware speed and capacity in the intervening years. By simply
scaling the run time and memory usage for reducing 15 minutes of SCUBA-2 data, we
estimate that a 32-core machine with 2 TB memory could reduce 15 minutes of SWCam
data in about an hour [5]. Four such machines would therefore be needed to reduce the
data as it is collected, and would be limited to small maps.

(3) Write a parallel version of map-maker to run on a distributed-memory cluster of machines.
The iterative algorithm is not trivially parallelizable, as each iteration and each model
within each iteration must be calculated sequentially. The solution then is to parallelize
each model calculation. This is also non-trivial, as some models require access to all
detectors at each time slice (e.g. the common model model), some models require all time
samples for each detector (e.g. the high-pass filter), and some require all samples (e.g. the
astronomical model). We solve this problem by message-passing via MPI.1

1Message Passing Interface: a standard defining a set of routines to pass messages between processes.
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The distibuted-memory parallelized version of the iterative map-maker has been described else-
where [6], but in this document we add more detail and discuss some practical considerations.

A note on terminology: a distributed-memory cluster consists of a number of connected nodes.
Each node may consist of a number of processors or cores. A single node can support multi-
threaded parallelization using shared memory between threads. The term process refers to a
single executable that is run on a node; a process is able to spawn multiple threads to take
advantage of a multicore node. The term system is used to refer to the set of all processes
involved in the calculation.

2 Parallel Algorithm

The iterative map-making algorithm as implemented by makemap is described in detail in [7].
Figure 1 shows the overall flow of the algorithm. Data are read from disk, prepocessing steps
(such as calibration and spike detection) are applied, and then a series of models is fit to the
time-stream residuals with the other best-fit models removed (initially assuming all models are
zero). This procedure is iterated until a convergence criterion or criteria is reached.

Preprocessing Model A Model B Model NData EndDone?

Iteration

Figure 1: The serial version of the iterative map-maker. The modules within the dashed box are
part of the iteration loop, which is terminated when a convergence criterion or criteria is met.

In the distributed-memory parallel version, each process reads a distinct chunk of data, applies
the preprocessing steps, and proceeds to calculate the models, as in the serial version. Each
model is then responsible for communication between processes to ensure that it is properly fit
to the full data set. See Figure 2.

By breaking up the data set over Nnode processes, we are able to handle data sets much larger
than can be done with a single machine. Additionally, since the calculations are split up over
many nodes, the map-maker can in principle run much faster than the serial version. The speed-
up in run time is not simply 1/Nnode, however, due to the time required by the communication
steps, which can be significant. Also, since the model calculations proceed sequentially, the
system proceeds only as fast as the slowest node. The scaling of run time with number of
processes for a prototype of this algorithm has been discussed elsewhere ([4, 6]).

We point out that makemap is already multithreaded using pthreads to take advantage of multi-
core CPUs. We intend to implement the distributed-memory parallelization while maintaining
the multithreading, as the shared-memory parallelization is much more efficient since there is
little communication overhead.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun258.htx/sun258.html?xref_MAKEMAP
http://www.starlink.ac.uk/cgi-bin/htxserver/sun258.htx/sun258.html?xref_MAKEMAP
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Preprocessing Model A Model B Model NData
(Chunk I)

EndDone?

Iteration

Preprocessing Model A Model B Model NData
(Chunk II)

EndDone?

Process 1

Process 2

Figure 2: The distributed-memory parallel version of the iterative map-maker is essentially
Nnode map-makers running independently, except that communication between processes is
required to calculate the models (represented by green arrows). Note that the termination
condition (represented by “Done?” in the figure), which could be looking at the change in RMS
of the residuals, also requires communication between processes.

3 Parallelizing the Models

The parallelization of the iterative map-maker is accomplished by the individual model. Each
model is responsible for ensuring that it is fit to all applicable data and that the best-fit model is
distributed to all processes. There are three classes of models to consider; those that require:

(1) all time samples for each individual detector (e.g. high-pass filter)

(2) all detector samples at each time slice (e.g. common mode)

(3) some more-complicated division of the data set (e.g. astronomical signal, which could be
solved by dividing the samples by region on the sky)

We can choose the division of the data set between nodes to make one of the model types easy to
calculate, but not all of them. Because the high-pass filter model performs FFTs on the detector
time streams, which we would hard to perform if an individual detector was spread out across
nodes, we decide to split the data between nodes so that each process acts on the complete time
streams for a number of detectors.

The parallelization of the example models listed above are now described in some detail to
illustrate how the parallelization of the different model-types is accomplished.

3.1 High-pass Filter

Figure 3 illustrates how the existing multithreaded map-maker performs the convolutions
necessary for the high-pass filter model. Since each detector time-stream can be processed
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independently, the detectors are divided into Nthread chunks and each thread performs the
convolution of each detector with the filter and stores the result directly in a shared-memory
array.

xdt xdt⊗f t

Figure 3: Illustration of the calculation of the high-pass filter model on four detectors with eight
time-samples each, using two threads. The red outlines indicate how the data are chunked for
processing by each thread.

With full detector time streams on each node, parallelizing the high-pass filter model is trivial,
as shown in Figure 4. Each node is responsible for Ndet/Nnode detectors which are then further
split up for each thread. No communication between processes is required.

xdt xdt⊗f t

xdt xdt⊗f t

Figure 4: Parallel version of the high-pass filter model. Here we have two processes (represented
by black outlines), each with two threads. The model is trivially parallelized, as each detector
can be processed independently.

3.2 Commom-mode Model

The calculation of the common-mode model is illustrated in Figure 5. The data are now chunked
along the detector dimension so that each thread calculates the average detector value for each
of a range of time slices. This is shown in the figure as a two-step process: the signal and number
of samples are accumulated into arrays, and then the accumulated sums are divided by the
number of samples. It is shown this way so that the generalization to the parallel version is
more clear.

xdt

∑
d=1

4

xdt

∑
d=1

4

1

⟨ x ⟩t

Figure 5: Illustration of the calculation of the common-mode model on a single node using
two threads. The data are chunked along the detector axis so that each thread can calculate the
common-mode signal (average value) at each time sample. The calculation of the average is
shown in two steps: first the signal and number of detectors are accumulated at each time slice,
then the average at each step is calculated. Note that it is simple to extend this to a weighted
average by accumulating wdtxdt and wdt instead of xdt and 1.
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In the parallel version, a single process is not able to fully calculate the model. Instead, each
process accumulates the sums for its set of detectors, then MPI communications are used to
accumulate the arrays across all processes. Each process can then perform the final division of
the accumulated arrays. The parallel version is shown in Figure 6.
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Figure 6: Parallel version of the common-mode model. An extra commumincation step (rep-
resented by green arrows) is inserted, where the arrays are accumulated across all nodes.
Multithreading is still used for parallelized calculation of the model.

The code to perform this operation might look something like this:

for (idet=0; idet<ndet; idet++) {
for (isamp=0; isamp<nsamp; isamp++) {

signal[isamp] += data[idet*ndet+isamp];
count[isamp] += 1;

}
}

#if USE_MPI
MPI_Allreduce(MPI_IN_PLACE, signal, nsamp, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);
MPI_Allreduce(MPI_IN_PLACE, count, nsamp, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);
#endif

for (isamp=0; isamp<nsamp; isamp++) {
signal[isamp] /= count[isamp];

}

This program is run by each process, where ndet is the number of detectors “owned” by
the process, and is not restricted to be the same in each process. The communications are
performed by the MPI command MPI_ALLreduce, which performs the exact operation we need:
an array (signal and count in the examples above) is combined across processes with a specified
operation (here, we specify “sum”) and the result is returned in place to each process. Following
the communication step, each process calculates the average for itself—this is quicker than
having a single thread calculate the average and then communicate the result. Also note that,
without the “#if USE_MPI/#endif” clause, the code is identical to what is calculated by the
serial version.

3.3 Astronomical Sky Model

The astronomical sky model rebins the data time streams, after subtraction of noise models, into
a map of the sky, the end product of the map-maker. The projection for detector/time sample
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to map pixel is a complicated function depending on the focal plane layout and telescope scan
pattern, and thus the task cannot be easily subdivided into a number of independent tasks in
the same way that is done for the filter and common-mode models. Instead, each thread in the
single-node version of the map-maker has its own copy of the map arrays and accumulates a
chunk of the data samples; the data could be chunked either by detector or time sample. After
each thread has finished accumulating its samples, the accumulator arrays are combined and
the final division is performed.

The paralellization of this calculation is analogous to the common-mode model; after the
threaded accumulator arrays are combined, the arrays are accumulated across nodes, again
using MPI_Allreduce, and the divisions are performed by each process.

3.4 Other Models

Models other than the ones discussed above should fall within one of the categories discussed
above. Communication commands other than MPI_Allreduce or operators other than MPI_SUM
may be needed for more complicated model-fitting.

4 Implementation Details

It will take some work to take the parallel algorithm described here and implemented in the
prototype and apply it to makemap. Some of the issues that will have to be considered are listed:

• Do we need to dynamically determine the amount of memory on each node? makemap
measures the total available memory and decides how much data to process at one time
based on the result. But in a typical cluster queueing system, one requests a specific
amount of memory per node, so this step might not be needed.

• A related question is how should the load be balanced? Do we allow for heterogenous
clusters of nodes? One could imagine determining the available memory, number of
processors and processor speed on each node and balance the data accordingly. But it
would be much simpler to assume the method will only be run on homogeneous clusters
and divide the data evenly between the nodes.

• Communication is also needed any time a return status is checked, since if one process is
going to abort, then whole system should abort. It should be sufficient to precede each
status test with an MPI_Allreduce call on the status variable using the operator MPI_LOR
(“logical or”).

• For certain models it may be more efficient to consider communicators other than the
default MPI_COMM_WORLD, which consists of all processes in the system. For example, one
might like to calculate the common mode on a per-array basis rather than a single mode for
all detectors. If the detectors are split across nodes such each node has detectors belonging
to only one array, a communicator can be created for each array (consisting of the nodes
that contain data from that array), and then the same form of MPI_Allreduce can be used,
with each node specifying the appropriate communicator. This type of sub-division could
help with the communication overhead.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun258.htx/sun258.html?xref_MAKEMAP
http://www.starlink.ac.uk/cgi-bin/htxserver/sun258.htx/sun258.html?xref_MAKEMAP
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