
SSN/68.3

Starlink Project
Starlink System Note 68.3

A J Chipperfield

17 December 1997

IFD
Interface Definition Files

1.2

SSN/68.3 —Abstract ii

Abstract

Interface Definition Files (IFDs) provide a generic method of defining the interface between
Starlink (ADAM) applications and various software environments. Software is described which
enables developers to create IFDs and use them to create files required by the Starlink or IRAF
environments.

http://www.starlink.ac.uk/cgi-bin/htxserver/sg4.htx/sg4.html?xref_
http://www.starlink.ac.uk/iraf/web/iraf-homepage.html

iii SSN/68.3—Contents

Contents

1 Introduction 1

2 Interface Definition Files 1
2.1 The Basic IFD . 1
2.2 Conditional Sections . 2
2.3 Creating IFDs from Interface files . 3

3 Producing Starlink Environment Files from an IFD 4

4 Producing IRAF Files from an IFD 4

5 Producing IRAF-specific Interface Files from an IFD 5

6 The ‘Full’ IFD File 5
6.1 IFD Initial Keywords . 6
6.2 Additional Action Keywords . 6
6.3 Parameter Definition Keywords . 6

6.3.1 General . 6
6.3.2 The dynamic keyword . 7
6.3.3 The outputpar keyword . 7
6.3.4 The repeated keyword . 8
6.3.5 The size keyword . 8

6.4 The command Keywords . 8
6.5 File-specific Output . 9

7 Details of IFD File Keywords 10
access . 11
action . 12
alias . 13
association . 14
cl . 15
command . 16
csh . 17
default . 18
defhelp . 19
display . 20
dynamic . 21
executable . 22
exepath . 23
help . 24
helpkey . 25
helplib . 26
icl . 27
in . 28
keyword . 29
obey . 30
obsolete . 31

SSN/68.3 —Contents iv

outputpar . 32
package . 33
parameter . 34
position . 35
ppath . 36
prefix . 37
print . 38
prompt . 39
range . 40
repeated . 41
sh . 42
size . 43
task . 44
taskinherit . 45
taskparam . 46
type . 47
version . 48
vpath . 49

v SSN/68.3—List of Figures

List of Figures

1 SSN/68.3 —Interface Definition Files

1 Introduction

The Starlink Software Environment (ADAM) requires that application packages to be run in it
have an associated Interface File (.ifl) which defines the parameters of the various applications,
and package definition files which define the commands available and the source of help etc.

Other environments such as IRAF require very similar information presented in a different way.

A file format known as the Interface Definition Format (IFD) has been developed so that a single
file can be the source of all the different files required to form the interface between Starlink
packages and the software environment in which they are to be run.

This document describes the Interface Definition Format and the software to process IFD files
into the required environment-specific files. Currently only ADAM and IRAF are handled. A
utility to assist in the production of an IFD file given an ADAM Interface File is also described.

2 Interface Definition Files

2.1 The Basic IFD

Suppose a Starlink application package, PKG, contains two monoliths, pkg_exe1, containing
actions act1 and act2, and pkg_exe2, containing actions act3 and act4. The IFD would have the
basic form:

package pkg {
Comments

executable pkg_exe1 {
action act1 {

parameter act1par1 {
...

}
parameter act1par2 {

...
}
...

}
action act2 {

parameter act2par1 {
...

}
...

}
...

}
executable pkg_exe2 {

action act3 {
parameter act3par1 {

...
}

http://www.starlink.ac.uk/cgi-bin/htxserver/sg4.htx/sg4.html?xref_
http://www.starlink.ac.uk/iraf/web/iraf-homepage.html

SSN/68.3 —Interface Definition Files 2

...
}
action act4 {

parameter act4par1 {
...

}
...

}
}

}

where ‘...’ represents omitted lines.

This is interpreted by Tcl with the keywords ‘package’, ‘executable’, ‘action’, etc. treated as
procedures which are defined appropriately depending upon the software environment for
which files are being produced. There are currently three scripts which make these definitions
and produce environment-specific files:

ifd2star Produces files required by the Starlink environment.

ifd2iraf Produces files required by the IRAF environment.

ifd2irafifl Produces Starlink interface files for use when running Starlink applications from
IRAF.

The following points should be noted:

• Keywords must be in lower case.

• Comments may be included – if # is found where a command (keyword) is expected, the
remainder of the line is treated as comment.

• Lists of values, such as the vpath specifier are space-separated (not comma-separated as
in ADAM Interface Files).

• String values containing space or $ must be quoted (with {}). Other Tcl special characters
will also need to be quoted or escaped.

A ‘full’ IFD will normally contain additional keywords to define absolutely everything required
in producing the environment-specific files.

2.2 Conditional Sections

The IFD may contain sections to be included or excluded depending upon the environment for
which it is being processed.

environment : { code }
environment ! { code }

The separator ‘:’ causes the code to be processed, and ‘!’ causes the code to be ignored only if
the environment is environment . In both cases, environment can be a comma-separated list of
environment names and the code may consist of multiple lines.

The term ‘environment’ is used loosely here – the environment is set to:

http://sunscript.sun.com/tcltext.html

3 SSN/68.3 —Interface Definition Files

star when ifd2star is running.

iraf when ifd2iraf is running.

irafifl when ifd2irafifl is running.

For example with,

star: { code }

code will only be processed by ifd2star, and with

star,iraf! { code }

code will not be processed by either ifd2star or ifd2iraf.

2.3 Creating IFDs from Interface files

For existing packages a basic IFD can be produced by running the ifl2ifd script on the .ifl
file(s) of the package.

% ifl2ifd kappa_mon

Will produce IFD kappa_mon.ifd from interface file kappa_mon.ifl.

Where the package consists of several monoliths, the resulting IFDs must be combined to
produce a single IFD.

This basic IFD will define all the package applications which are in the monoliths. However:

(1) Some action definitions may not be required for all environments – the conditional inclu-
sion syntax (see Section 2.2) should be used for these.

(2) Any aliases for the command names should be inserted. This includes the abbreviations
allowed in ICL – IRAF has its own system for command abbreviation which does not
require any additions to the IFD.

(3) Some parameter definitions may need tweaking. In particular:

• Vector or array parameters which have not been recognised as such (because there
was no vector or array static default specified in the interface file) must have a size
definition added.
• Static defaults should only be specified if they are genuine default values. Some

packages do not use the DEFAULT value in the ADAM environment but it is usually
used in IRAF and so bad values can cause problems which were not apparent in
ADAM. In other cases, no default value has been specified (probably because a
GLOBAL value was expected to be used) whereas a default value would be useful
for IRAF.

(4) Commands which form part of the package but are not just simple invocations of the
applications must be defined.

(5) Any Comments or displays required in the package definition files must be defined.

More information on the changes required for IRAF is given in SSN/35.

http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/ssn35.htx/ssn35.html?xref_

SSN/68.3 —Producing IRAF Files from an IFD 4

3 Producing Starlink Environment Files from an IFD

The Tcl script ifd2star is used to produce the Starlink environment files for the package.

ifd2star package

will process IFD package.ifd and produce the following files required by the Starlink (ADAM)
environment:

Interface Files Describing the parameters for the ADAM programs. These files are described
in detail in SUN/115. Where applications are combined into monolithic executable files,
individual interface files are produced for each application in addition to a monolithic
interface file.

The ICL Package Definition File Defining the ICL commands associated with the package and
known as the package .icl file. These files are described in detail in SSN/64.

Shell Package Definition File Defining the commands associated with running the package
direct from the shell. This file is written in two syntaxes, the package .csh file for csh-type
shells, and a .sh file for sh-type shells. These files are described in detail in SSN/64.

4 Producing IRAF Files from an IFD

The Tcl scripts ifd2iraf and ifd_irafhlpgen are used to produce the files required by IRAF.
More details on the files produced may be found in SSN/35 and the IRAF documentation.

ifd2iraf package

will process IFD package.ifd and produce the following files:

• An IRAF parameter file, application.par, for each application in the package. These
define the IRAF parameters associated with the application. There will be a one-to-one
correspondence between the IRAF parameters and the ADAM parameters although they
may be handled differently in the two environments.

• An IRAF package definition file, package.cl. This defines the IRAF commands to run
the applications in the package. The name package is derived from the argument of the
package procedure call in the .ifd file.

• An IRAF package parameter file, package.par. This defines parameters for the package -
in particular, the version number.

• An Output Parameter File, executable.tcl for each executable in the package. Each
one lists the ‘output’ and ‘dynamic’ parameters for each action in the executable. This
information is required by the IRAF/Starlink inter-operability system rather than IRAF
itself.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun115.htx/sun115.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sg5.htx/sg5.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/ssn64.htx/ssn64.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/ssn64.htx/ssn64.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/ssn35.htx/ssn35.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/ssn35.htx/ssn35.html?xref_task_parameter_files
http://www.starlink.ac.uk/cgi-bin/htxserver/ssn35.htx/ssn35.html?xref_package_definition_files
http://www.starlink.ac.uk/cgi-bin/htxserver/ssn35.htx/ssn35.html?xref_package_parameter_files
http://www.starlink.ac.uk/cgi-bin/htxserver/ssn35.htx/ssn35.html?xref_the_output_parameters_file
http://www.starlink.ac.uk/cgi-bin/htxserver/ssn35.htx/ssn35.html?xref_output_parameters
http://www.starlink.ac.uk/cgi-bin/htxserver/ssn35.htx/ssn35.html?xref_dynamic_parameters

5 SSN/68.3 —The ‘Full’ IFD File

and:

ifd_irafhlpgen package

will read the Starlink HLP source file package.hlp and produce a set of IRAF help files for the
package but it is likely that changes to the text will be required.

5 Producing IRAF-specific Interface Files from an IFD

It may sometimes be found that the interface file required when running a Starlink application
from IRAF is different from that required normally. Conditional statements (see Section 2.2) for
the ‘irafifl’ environment may be included in the IFD and the Tcl script ifd2irafifl used to
create the special interface files (no other files are produced).

For example, with the IFD:

package pkg {
irafifl! { executable pkg_exe1 {
...
}
executable pkg_exe2 {

action act1 {
parameter act1par1 {

type _REAL
vpath prompt

irafifl! {ppath CURRENT DYNAMIC DEFAULT}
irafifl: {ppath DYNAMIC DEFAULT}

...
}
...

}
...

}
}

The command:

% ifd2irafifl package

will produce an interface file for pkg_exe2 only, with a ppath of ‘DYNAMIC,DEFAULT’ for parameter
act1par of action act1.

6 The ‘Full’ IFD File

The basic keywords in an IFD have already been described but in order to produce complete
versions of the required environment files automatically, additional syntax and keywords
are available. This section outlines what is available; see elsewhere (Section 7) for complete
descriptions of all the keywords.

http://www.starlink.ac.uk/cgi-bin/htxserver/ssn35.htx/ssn35.html?xref_help_files

SSN/68.3 —The ‘Full’ IFD File 6

6.1 IFD Initial Keywords

The following are examples of the additional keywords which may appear within the package de-
scription (i.e. after package name {). They are all optional and will be ignored for environments
for which they are not relevant.

version 1.0 # Specifies a package version number

exepath {$PKGNAME_DIR} # specifies the directory containing executable
images etc. - default $PKGNAME_DIR

helplib {$PKGNAME_HELP} # specifies the help library - default
$PKGNAME_HELP
Will be effective until another helplib

prefix pkg # specifies a prefix for automatic aliases E.g
’prefix kap’ would result in kap_add etc
being defined in addition to add.

display {
Message to display whilst .csh, .sh, .icl scripts for example are running
It will usually be the welcome message for the package.
A display may contain any number of lines which will be displayed line
for line. There may be more that one display in an IFD.
}

defhelp topic entry [library] # Help on topic may be found in library
(default Current(helplib)) section
defined by entry

6.2 Additional Action Keywords

The following are examples of the additional keywords which may appear within the action
description (i.e. after action name {). They are all optional and will be ignored for environments
for which they are not relevant.

alias {acto(ne) act1 act_1} # possible aliases

helplib {$EXAMPLE1_HELP} # New helplib if required.

6.3 Parameter Definition Keywords

6.3.1 General

Within the parameter description (i.e. after parameter name {), The following keywords may
appear (example arguments are given):

access READ
association <->GLOBAL.COORD_SYSTEM
default {two words}
dynamic yes

7 SSN/68.3 —The ‘Full’ IFD File

help {\%$KAPPA_HELP ADD PARAMETERS IN1}
helpkey *
in Data World
outputpar
position 1
ppath GLOBAL DYNAMIC
prompt {Co-ordinate system used in the ARD file}
range 1 10
repeated
size *
type _REAL
vpath GLOBAL DEFAULT

They are all optional and will be ignored for environments for which they are not relevant. There
is an obvious correspondence between most of these keywords and the parameter definition
fields of an ADAM interface file as described in SUN/115 which should be consulted for the finer
details of permitted values but remember that lists, such the ppath value, are space-separated
in the IFD but comma-separated in the Interface File, and character constants only need to be
quoted in the IFD (with {}) if they contain spaces or $.

The keywords which do not have a corresponding ADAM Interface File field are dynamic,
outputpar, repeated and size (see the following sections).

6.3.2 The dynamic keyword

This keyword forces the parameter to be classed as ‘dynamic’ or ‘non-dynamic’ regardless of
the normal default.

A dynamic parameter is one whose value cannot easily be set as a static default or calculated by
the user at runtime. The Starlink Software Environment allows such values to be set by means
of VPATH GLOBAL or VPATH DYNAMIC but this is not available for other environments so
they must be handled as special cases. In the case of IRAF, for instance, dynamic parameters
are handled by forcing the ADAM task to issue a parameter request message with a suggested
value. This message is intercepted by the IRAF/Starlink adaptor process which returns the
suggested value without asking IRAF for a value. For more information on this, see SSN/35.

In the absence of a dynamic keyword, all parameters with VPATH starting with GLOBAL are
classed as dynamic and all others (including VPATH DYNAMIC) as non-dynamic.

So that users are warned, particularly when using IRAF epar, that changing the parameter is
likely to have an unexpected effect, the prompt string has *! prepended to it.

6.3.3 The outputpar keyword

For non-primitive parameter types, there is a potential confusion between the access required
to the parameter and the access required to the file or device whose name is given by the
parameter. ADAM requires to be told the access to the file or device and IRAF (more accurately
the IRAF/Starlink inter-operability system) needs to know if the value of the parameter itself is
output and thus that the IRAF parameter must be updated after the application has run. The
list of parameters which must be updated is read from the Output Parameter File created by
ifd2iraf.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun115.htx/sun115.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/ssn35.htx/ssn35.html?xref_the_adaptor_process
http://www.starlink.ac.uk/cgi-bin/htxserver/ssn35.htx/ssn35.html?xref_dynamic_parameters

SSN/68.3 —The ‘Full’ IFD File 8

The system will assume that primitive types need updating if the access mode (as defined by the
access keyword) is ‘WRITE’ or ‘UPDATE’ and that other types are not output. For this reason,
the outputpar keyword is provided to force a non-primitive parameter to be output if necessary.

6.3.4 The repeated keyword

This keyword is used to indicate that new values for the parameter may required repeatedly
during one invocation of the program. This will usually mean that the user must be prompted
each time. In IRAF the recommended default ‘automatic’ mode allows prompting to be overrid-
den and the same value supplied each time a value is requested so ‘query’ mode must be set for
‘repeated’ parameters.

6.3.5 The size keyword

ADAM does not require to know the size of a parameter, or even whether it is a scalar, vector or
array. However, this information is required for some parameter systems so the size keyword
is provided in the IFD format.

The IRAF/Starlink inter-operability system only needs to know that the parameter is non-scalar
so currently the argument is ignored and may be given as *.

6.4 The command Keywords

A keyword command is provided to define commands for the command language in use (ICL,
CL etc.) which will do various generic things as follows:

• Define a command which will display a message to the user.

command task1 {
print {task1 has been renamed to task2}

}

• Define a command which will obey a command in the underlying shell.

command cleanup {
obey {rm *.tmp}

}

• Define a command to run an action with set parameters

command fitsexist {
task fitsmod { taskinherit ndf

taskinherit keyword
taskparam edit=exist
taskparam mode=interface

}
}

The taskinherit subcommand gives the names of parameters of the command whose
values will be inherited by the action named in the task subcommand. The taskparam
subcommand gives the name and fixed value of the other parameters to be passed to
the action. The code above will result in command fitsexist being defined with two
parameters, ndf and keyword so that obeying

9 SSN/68.3 —The ‘Full’ IFD File

fitsexist comwest simple

is equivalent to obeying fitsmod with: parameter ndf set to comwest; parameter keyword
set to simple; parameter edit set to exist and parameter mode set to interface.

Note that in Starlink mode, the csh, sh and ICL user-interfaces will just append any-
thing following the fitsexist command to the fitsmod command, following the fixed
parameters. The taskinherit keyword has no effect.

• Define an obsolete command – if it is obeyed, the message is displayed.

command oldcommand {
obsolete {Command oldcommand is obsolete - use newcommand}

}

Note that in addition to the subcommand print, obey etc. the command definition may contain
alias specifications.

6.5 File-specific Output

Sometimes output is required only for one particular file. The following keywords allow lines to
be put, verbatim, into the appropriate file. They are ignored if that file is not being produced.

For example:

Output to the package.icl file.
icl {

\{ This is an ICL comment - NOTE that the brace must be escaped
load file

}

Output to the package.csh file.
csh {

Define an alias in the .csh file
alias command shell_command

}

Output to the package.sh file.
sh {

Define a shell function in the .sh file.
(the exotic reference to the positional arguments is a portable
version of plain "$@")

command () { shell_command ${1+"$@"}; }
}

Output to the package.cl file.
cl {

Set an IRAF environment variable for the package
set FIGARO_AXES=true

}

SSN/68.3 —Details of IFD File Keywords 10

7 Details of IFD File Keywords

11 access SSN/68.3 —Details of IFD File Keywords

access
define the access needed to the parameter.

Description:
The access may be READ, WRITE or UPDATE (see SUN/115 for details).

Invocation:

access mode

Arguments:

mode
The required access mode.

Examples:
access READ

Specifies READ access for the parameter.

Effects:

ADAM: The appropriate access field is written to the Interface Files.

IRAF: For file type parameters there is currently no action. For other types the parameter
is listed in the Output Parameter File if the access mode is WRITE or UPDATE.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun115.htx/sun115.html?xref_

SSN/68.3 —Details of IFD File Keywords 12 action

action
Declare an action within an executable

Description:
Declares the name of an action (application) within an executable image and defines the
action.

Invocation:

action actionname { definition }

Arguments:

actionname
The name of the action.

definition
A Tcl script defining the action in terms of the Tcl procedures declared for an action.

Subcommands:

The following keywords are defined within an action definition: alias, parameter.

Examples:
action add {

parameter in {
...

}
}

Defines the action add with parameter in.

Effects:

ADAM: Opens the individual .ifl.

IRAF: Opens the .par file.

13 alias SSN/68.3 —Details of IFD File Keywords

alias
Define command aliases for the action

Description:
By default a command with the same name as the action will be defined to invoke each
action and, if a prefix is defined, a command name with the given prefix will also be
defined.

The alias command allows a list of additional command names to be defined to invoke
the action. The list of aliases may be a list of simple command names or names of the form:

com(mand)

where the part before the parentheses is the minimum abbreviation. (Currently this only
applies for ICL.)

If a prefix is defined, prefixed command names will also be defined for all aliases.

Invocation:

alias { alias_list }

Arguments:

alias_list
A list of additional command names.

Examples:
alias { acto(ne) act1 }

Defines acto, acton and act1 as aliases for actone.

Effects:

ADAM: As defined.

IRAF: None.

SSN/68.3 —Details of IFD File Keywords 14 association

association
Specify an associated GLOBAL parameter

Description:
This corresponds with the ADAM ASSOCIATION field (see SUN/115 for details).

Invocation:

association specification

Arguments:

specification
specifies the name of the associated GLOBAL parameter and the allowed access to it.

Examples:
association <->GLOBAL.DEVICE

GLOBAL.DEVICE may be used as a source for the value or suggested value of the current
parameter, and will be updated with the current value of the parameter if the application
ends successfully.

association <-GLOBAL.DEVICE

GLOBAL.DEVICE may be used as a source for the value or suggested value of the current
parameter but will not be updated with the current value of the parameter.

Effects:

ADAM: The appropriate association field is written to the Interface Files.

IRAF: None.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun115.htx/sun115.html?xref_

15 cl SSN/68.3 —Details of IFD File Keywords

cl
Lines for output to the package .cl file

Description:
Specifies lines of text to be output to the package .cl file.

Invocation:

cl { text }

Arguments:

text
The specified text is written to the package .cl file. It may consist of more than one line.
The text should be legal IRAF command language.

Examples:
cl { # Set an IRAF environment variable

set FIGARO_AXES=true }

Inserts a comment and a set command into the package .cl file.

Effects:

ADAM: None.

IRAF: As defined.

SSN/68.3 —Details of IFD File Keywords 16 command

command
Define a command

Description:
This command defines package commands other than those to run applications in the
standard way. The command definition may contain an alias subcommand and must
contain one of the other subcommands listed below.

Invocation:

command name { definition }

Arguments:

name
The name of the command.

definition
A Tcl script defining the command in terms of the Tcl procedures declared for a command.

Subcommands:

The following keywords are defined within a command definition:
alias – define aliases for the new command
print – print a message
obey – obey a shell command
task – run an action with given parameters
obsolete – define an obsolete command.

Examples:
command abc {

alias def
task xyz { taskparam par=3.0 }

}

Defines command abc to run command xyz with parameter par set to 3.0. def is an alias
for abc.

Effects:

ADAM: As specified.

IRAF: As specified.

17 csh SSN/68.3 —Details of IFD File Keywords

csh
Lines for output to the .csh file

Description:
Specifies lines of text to be output to the .csh file.

Invocation:

csh { text }

Arguments:

text
The specified text is written to the .csh file. It may consist of more than one line. The text
should be legal C-shell command language.

Examples:
csh { # Define the help library

setenv KAPPA_HELP INSTALL_HELP/kappa }

Inserts a comment and a setenv command into the .csh file.

Effects:

ADAM: As defined.

IRAF: None.

SSN/68.3 —Details of IFD File Keywords 18 default

default
Define the default value for a parameter

Description:
Defines the default value for a parameter and must be of an appropriate type (see SUN/115
for details).

Invocation:

default value

Arguments:

value
The default value for the parameter. It can be an array, in which case the elements should
be space-separated.

Examples:
default y

Specifies TRUE as the default for a LOGICAL parameter.

default 1.0 10.0

Specifies vector [1.0,10.0] as the default.

default {a b}

Specifies the string "a b" as the default.

default a b

Specifies the array ["a", "b"] as the default.

Effects:

ADAM: As specified – output to the .ifl files.

IRAF: The value is used as the initial default value in the .par file. For primitive data
types, a default of ! is changed to INDEF.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun115.htx/sun115.html?xref_

19 defhelp SSN/68.3 —Details of IFD File Keywords

defhelp
Define a help topic

Description:
The defhelp procedure specifies the location of help information on a topic assuming
a hierarchical help system such as Starlink HLP and the currently defined help library
(see helplib). Currently defhelp is only used in defining help when running from ICL.
The location of help on the applications is defined automatically – it is only necessary to
include defhelp keywords in the IFD for other topics.

Invocation:

defhelp topic location

Arguments:

topic
The topic name.

location
The location within the currently defined help library at which help on the specified topic
will be found.

Examples:
defhelp data_structures data_structures

Help on ‘data_structures’ is found in subtopic ‘data_structures’ of the current help library.

defhelp kappa 0

Help on ‘kappa’ is found in the top level of the current help library.

Effects:

ADAM: As specified.

IRAF: None.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun124.htx/sun124.html?xref_

SSN/68.3 —Details of IFD File Keywords 20 display

display
Define a display message

Description:
Defines a message to display whilst .csh or .icl scripts, for example, are running. It will
usually be the welcome message for the package. A display may contain any number of
lines which will be displayed line for line. There may be more that one display in an IFD.

Invocation:

display { message }

Arguments:

message
The message to be displayed. It may consist of more than one line.

Examples:
display {
Welcome to the package

Version 1.1-1
}

The message will be displayed, as aligned, when the package is initialised from ICL or the
Unix shell.

Effects:

ADAM: As specified.

IRAF: None.

21 dynamic SSN/68.3 —Details of IFD File Keywords

dynamic
Define a parameter to be ‘dynamic’

Description:
Forces the parameter to be classed as dynamic or non-dynamic regardless of other consid-
erations. For more information, see ‘The dynamic Keyword’ (Section 6.3.2).

Invocation:

dynamic switch

Arguments:

switch
yes, y, true or t to make the parameter dynamic.
no, n, false or f to make the parameter non-dynamic.

Examples:
dynamic yes

Forces the parameter to be classed as dynamic.

Effects:

ADAM: None.

IRAF: If the parameter is made dynamic, it is listed in the DynParList array in the Output
Parameter File and has its mode set to automatic in the task parameter file and its
prompt string will be preceded by *!.
Note that parameters with vpath starting with GLOBAL will default to being dynamic.

SSN/68.3 —Details of IFD File Keywords 22 executable

executable
Declare an executable image

Description:
Declares the name of an executable image (usually an ADAM monolith) and defines the
actions within the image.

Invocation:

executable image { definition }

Arguments:

image
The name of the executable image.

definition
A Tcl script defining the executable in terms of the Tcl procedures declared for an exe-
cutable.

Subcommands:

The following keyword is defined within an executable definition: action.

Examples:
executable kappa_mon { ... }

Define the executable image kappa_mon.

Effects:

ADAM: Opens the monolithic interface file and changes the executable image referred to
in the .icl and .csh files.

IRAF: Opens the .tcl file and changes the executable image referred to in the .cl file.

23 exepath SSN/68.3 —Details of IFD File Keywords

exepath
Specify the directory containing executables etc.

Description:
The specified directory is used in constructing the Starlink package definition files package.icl
and package.csh. IT IS NOT USED IN PRODUCING THE IRAF FILES.

If not specified, the directory $PACKAGE_DIR is used.

Invocation:

exepath directory

Arguments:

directory
The directory specification. This could contain environment variable for translation at
runtime.

Examples:
exepath { $KAPPA_DIR }

will result in the directory defined by environment variable KAPPA_DIR being used – for
package KAPPA, this is the same as the default.

exepath /home/adam4/ajc/kappa

will result in directory /home/adam4/ajc/kappa being used.

Effects:

ADAM: As defined.

IRAF: None.

SSN/68.3 —Details of IFD File Keywords 24 help

help
Define the ‘one-line’ help for this parameter

Description:
Currently only for ADAM (see SUN/115 for details).

Invocation:

helpkey help_specifier

Arguments:

help_specifier
The text to be displayed if help is requested or a pointer to a help-file module.

Examples:
help { The number of values (between 1 and 10) }

Specifies the text to be displayed if parameter help is requested.

help { %$KAPPA_DIR ADD PARAMETERS IN1 }

Specifies the module in which parameter help is to be found.

Effects:

ADAM: Produces an Interface File help field.

IRAF: None.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun115.htx/sun115.html?xref_

25 helpkey SSN/68.3 —Details of IFD File Keywords

helpkey
Define the source of help for this parameter

Description:
Currently only for ADAM (see SUN/115 for details).

Invocation:

helpkey help_specifier

Arguments:

help_specifier
A help file and module path.

Examples:
helpkey { $KAPPA_HELP PARAMETERS ADD IN1 }

Specifies the hierarchy within the help file $KAPPA_HELP at which help on the parameter
is found.

helpkey *

Specifies the default module for help on the parameter.

Effects:

ADAM: Produces an Interface File helpkey field.

IRAF: None.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun115.htx/sun115.html?xref_

SSN/68.3 —Details of IFD File Keywords 26 helplib

helplib
Specify the pathname of the help library.

Description:
The specified filename is used in constructing ADAM Interface Files and the package
definition files package.icl, package.csh and package.sh. IT IS NOT USED IN PRODUCING
THE IRAF FILES.

If not specified, the directory $PACKAGE_HELP is used.

Invocation:

helplib library

Arguments:

library
The name of the help library. This could contain environment variable for translation at
runtime.

Examples:
helplib $KAPPA_HELP

will result in the file defined by environment variable KAPPA_HELP being used – for
package KAPPA, this is the same as the default.

Effects:

ADAM: As specified.

IRAF: None.

27 icl SSN/68.3 —Details of IFD File Keywords

icl
Lines for output to the .icl file

Description:
Specifies lines of text to be output to the .icl file.

Invocation:

icl { text }

Arguments:

text
The specified text is written to the .icl file. It may consist of more than one line. The text
should be legal ICL command language.

Examples:
icl { \{ Define a command to print "Hello"

defstring welcome print "hello" }

Inserts a comment and a defstring command into the .icl file. NOTE the { in the comment
must be escaped.

Effects:

ADAM: As defined.

IRAF: None.

SSN/68.3 —Details of IFD File Keywords 28 in

in
Define a set of acceptable values for the parameter

Description:
Currently only for ADAM (see SUN/115 for details).

Invocation:

in set

Arguments:

set A list of values of appropriate type.

Examples:
in Red White Blue

The acceptable values are: Red, White or Blue.

Effects:

ADAM: Produces an Interface File in field.

IRAF: None.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun115.htx/sun115.html?xref_

29 keyword SSN/68.3 —Details of IFD File Keywords

keyword
Specify the name by which the parameter is known to the user.

Description:
Currently only for ADAM and deprecated. This keyword can be used to specify the name
by which the parameter is known to the user (on the command line and in prompts and
messages etc). It defaults to the parameter name.

Invocation:

keyword { name }

Arguments:

name
The name to be used.

Examples:
parameter x

keyword y
...

}

Parameter x will be known as y to the user.

Effects:

ADAM: Produces an Interface File keyword field

IRAF: None.

SSN/68.3 —Details of IFD File Keywords 30 obey

obey
Obey a command language command

Description:
A subcommand of command. When the defined command is invoked, a command will be
obeyed in the underlying shell. Obviously the command will vary depending upon the
shell in use – currently Interface Definition Files assume csh.

Invocation:

obey { command }

Arguments:

command
The command to be obeyed.

Examples:
command abc {

obey { date }
}

The command date will be obeyed by the underlying shell if command abc is obeyed.

Effects:

ADAM: The appropriate commands are written to the .icl and .csh files.. The imple-
mentation for ICL means that the command is actually obeyed by ICL which will
pass most shell commands on to the shell.

IRAF: The foreign command mechanism is used.

31 obsolete SSN/68.3 —Details of IFD File Keywords

obsolete
Define an obsolete command

Description:
A subcommand of command. If the defined command is invoked, this will usually just print
the message – some systems may ignore it altogether.

Invocation:

obsolete { message }

Arguments:

message
The message to be displayed if the command is obeyed.

Examples:
command abc {

obsolete { Command abc is obsolete - use xyz instead }
}

The given message will be displayed if command abc is obeyed.

Effects:

ADAM: The appropriate commands are written to the .icl and .csh files.

IRAF: The foreign command mechanism is used.

SSN/68.3 —Details of IFD File Keywords 32 outputpar

outputpar
Force the parameter value to be output

Description:
Forces the parameter to be treated as an ‘output’ parameter, regardless of the specified
access mode. For more information, see ‘The outputpar keyword’ (Section 6.3.3).

Invocation:

outputpar

Arguments:

None

Examples:
parameter INFILE {

type FILE
access READ
outputpar
...

}

The name of the file to be read from is generated by the program and output as the value
of parameter INFILE.

Effects:

ADAM: None.

IRAF: The parameter is listed in the Output Parameter File.

33 package SSN/68.3 —Details of IFD File Keywords

package
Define a package

Description:
This command declares the name of a package and defines the commands etc. contained
in the package.

Invocation:

package pkgname { definition }

Arguments:

pkgname
The name of the package. This will be used as the name of the created package definition
files.

definition
A Tcl script defining the package in terms of the Tcl procedures declared for a package.

Subcommands:

The following keywords are defined within a package definition: executable, version,
exepath, helplib, prefix, display, defhelp, command, icl, csh, sh.

Examples:
package kappa {

executable kappa_mon {
...

}
}

Defines the KAPPA package.

Effects:

ADAM: Opens the .icl and .csh files.

IRAF: Opens the .cl file.

SSN/68.3 —Details of IFD File Keywords 34 parameter

parameter
Define an action parameter

Description:
Declares a parameter name and defines its type etc.

Invocation:

parameter name { definition }

Arguments:

name
The name of the parameter.

definition
A Tcl script defining the parameter in terms of the Tcl procedures declared for a parameter.

Subcommands:

The following keywords are defined within a parameter definition: position, type,
size, access, outputpar, vpath, ppath, association, prompt, default, in, range, help,
helpkey, repeated, dynamic. keyword.

Examples:
parameter par1 {

position 1
type _REAL
...

}

Defines parameter par1.

Effects:

ADAM: As specified – output to the .ifl files.

IRAF: As specified – output to the .par file.

35 position SSN/68.3 —Details of IFD File Keywords

position
Define the command line position for this parameter

Description:
defines a command-line ‘position’ for the parameter.

Invocation:

position number

Arguments:

number
A command line position.

Examples:
action act1

parameter x
position 2
...

}
parameter a

position 1
...

}
...
}

The command act1 5 10 would invoke action act1 with parameter x set to 10 and pa-
rameter x set to 5.

Effects:

ADAM: Produces an Interface File position field.

IRAF: Positional parameters are listed first, in the correct order, in the .par file.

SSN/68.3 —Details of IFD File Keywords 36 ppath

ppath
Define a search path for the suggested value in a prompt

Description:
This corresponds with the ADAM PPATH field (see SUN/115 for details). The specified
search path comprises a space-separated list of one or more of:
CURRENT – The last-used value of the parameter
DEFAULT – take the static default
DYNAMIC – take the dynamic default
GLOBAL – take the value of the associated GLOBAL parameter

Invocation:

ppath search_path

Arguments:

search_path
A space-separated list of possible sources.

Examples:
ppath GLOBAL DEFAULT

If the associated GLOBAL parameter is not set, use the static default.

Effects:

ADAM: The appropriate ppath field is written to the Interface File.

IRAF: None.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun115.htx/sun115.html?xref_

37 prefix SSN/68.3 —Details of IFD File Keywords

prefix
Define a command-name prefix.

Description:
This procedure defines a prefix which may be added to command names in the event of
ambiguities between command names in different packages. It will normally be the first
three letters of the package name.

Invocation:

prefix prefix

Arguments:

prefix
The prefix to be used.

Examples:
prefix kap

‘kap’ will be used as the optional command name prefix.

Effects:

ADAM: As specified.

IRAF: None.

SSN/68.3 —Details of IFD File Keywords 38 print

print
Define a command to print a message

Description:
A subcommand of command. When the defined command is invoked, the specified message
is displayed to the user.

Invocation:

print { message }

Arguments:

message
The message to be displayed.

Examples:
command abc {

print { The XXX application is not available for IRAF. }
}

The specified text will be displayed if the command abc is obeyed.

Effects:

ADAM: The appropriate commands are written to the .icl and .csh files.

IRAF: The foreign command mechanism is used.

39 prompt SSN/68.3 —Details of IFD File Keywords

prompt
Specify the prompt string

Description:
Specifies the string to be used when prompting for the parameter. Starlink user-interfaces
will usually also display the parameter name and offer a suggested value.

Invocation:

prompt { text }

Arguments:

text
The prompt string.

Examples:
prompt { Type a REAL number }

If a value for the parameter is required from the user, a prompt with the specified text will
be given.

Effects:

ADAM: The appropriate prompt field is written to the Interface Files.

IRAF: The appropriate prompt field is written to the .par file.

SSN/68.3 —Details of IFD File Keywords 40 range

range
Define the range of values permitted for the parameter

Description:
Currently only for ADAM (see SUN/115 for details).

Invocation:

range min max

Arguments:

min
The minimum acceptable value.

max
The maximum acceptable value.

Examples:
range 1 10

The value must lie between 1 and 10 inclusive.

range A Z

The value must lie between A and Z inclusive.

Effects:

ADAM: Produces an Interface File range field.

IRAF: Set min and max values in the .par file.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun115.htx/sun115.html?xref_

41 repeated SSN/68.3 —Details of IFD File Keywords

repeated
Parameter value is obtained repeatedly.

Description:
Informs the system that new values for the parameter may be requested repeatedly during
one invocation of the program.

Invocation:

repeated

Arguments:

None

Examples:
parameter INFILE {

type FILE
access READ
repeated
...

}

There may be repeated request for a new value of the parameter INFILE.

Effects:

ADAM: None.

IRAF: The parameter is set to ‘query’ mode.

SSN/68.3 —Details of IFD File Keywords 42 sh

sh
Lines for output to the .sh file

Description:
Specifies lines of text to be output to the .sh file.

Invocation:

sh { text }

Arguments:

text
The specified text is written to the .sh file. It may consist of more than one line. The text
should be legal sh-style shell command language.

Examples:
sh { # Define the help library

KAPPA_HELP=INSTALL_HELP/kappa; export KAPPA_HELP
}

Inserts a comment, and a command to set an environment variable, into the .sh file.

Effects:

ADAM: As defined.

IRAF: None.

43 size SSN/68.3 —Details of IFD File Keywords

size
Define the size of the parameter

Description:
The parameter size may be given as any string (usually *). The actual value is not used
but some systems needs to know if the parameter is a vector or array.

Invocation:

size size

Arguments:

size
Any string to indicate the size.

Examples:
size *

Specifies that the parameter takes an array value.

size 2

Specifies that the parameter takes an array value.

Effects:

ADAM: None.

IRAF: The parameter is defined as type struct.

SSN/68.3 —Details of IFD File Keywords 44 task

task
Invoke an action with a given set of parameters.

Description:
A subcommand of command. When the defined command is invoked, it invokes the named
action. Fixed and variable parameters for the action may be specified. The named action
must be in the current package and already be defined.

Invocation:

task name { description }

Arguments:

name
The name of the action to be invoked.

description
A list of parameter definitions using the taskparam and taskinherit keywords.

Examples:
command abc {

task xyz {
taskparam {method=list}
taskparam {value=1.0}
taskinherit ndf

}

Obeying command abc filename will be equivalent to obeying command xyz with pa-
rameters method and value set as specified and parameter ndf set to filename.

Effects:

ADAM: The appropriate command definitions are written to the .icl and .csh files. Note
that the taskinherit keyword has no effect. Anything following the primary com-
mand invocation will be appended to the invocation of the named action, following
the fixed parameters.

IRAF: A CL procedure is created and a command defined in the package .cl file to run it.
The procedure will have parameters as defined by any taskinherit keywords and
will invoke the named action with the inherited parameter values followed by the
fixed parameters, all in keyword=value form.

45 taskinherit SSN/68.3 —Details of IFD File Keywords

taskinherit
Define a parameter name for a command task command

Description:
A subcommand of task. Specifies the name of a parameter of the action whose value is to
be inherited from the top-level command

Invocation:

taskinherit { parameter_name }

Arguments:

parameter_name
The name of the parameter

Examples:
See task example.

Effects:

ADAM: None – anything following the command name on the command line will be
added, verbatim, to the action invocation.

IRAF: The created task procedure (see task) has a parameter with the given name which
is inherited by the secondary command.

SSN/68.3 —Details of IFD File Keywords 46 taskparam

taskparam
Define a parameter value for a command task command

Description:
A subcommand of task. The parameter specification is added, verbatim, to the invocation
of the name action.

Invocation:

taskparam { parameter_specification }

Arguments:

parameter_specification
A string to be added to the command line when invoking the named action. It may be any
string which is legal as a parameter of the command specified by the task keyword but
will normally be of the form ‘keyword=value’.

Examples:
See task example.

Effects:

ADAM: The parameter specification is added to the command written to the .icl and
.csh files.

IRAF: The parameter specification is added to the command line in the created task
procedure (see task) which invokes the action.

47 type SSN/68.3 —Details of IFD File Keywords

type
Define the type of the parameter

Description:
The parameter type may be: _CHAR, LITERAL, _DOUBLE, _INTEGER, _REAL, _LOGI-
CAL or a structure type (see SUN/115 for details). For environments other than ADAM,
suitable choices are made.

Invocation:

type type

Arguments:

type
The ADAM type of the parameter.

Examples:
type _REAL

Specified type _REAL for the parameter.

Effects:

ADAM: As specified – output to the .ifl files.

IRAF: Scalar _CHAR, LITERAL, _DOUBLE, _INTEGER, _REAL and _LOGICAL types
become string, string, real, integer, real and boolean respectively. Vectors and arrays
are defined as type struct (see the size keyword). All other types are treated as
filenames.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun115.htx/sun115.html?xref_

SSN/68.3 —Details of IFD File Keywords 48 version

version
Define the version number of the package.

Description:
This is optional. The preferred way of setting the version number into package files is to
use the PKG_VERS macro in the makefile at install time.

Invocation:

version version_number

Arguments:

version_number
The package version number.

Examples:
version V2.1-1

Specifies version 2.1-1

Effects:

ADAM: None.

IRAF: If defined the version number will be written as the value of the version parameter
in the package.par file. If it is not defined, it defaults to ‘PKG_VERS’.

49 vpath SSN/68.3 —Details of IFD File Keywords

vpath
Define the source of the parameter value.

Description:
This corresponds with the ADAM VPATH field (see SUN/115 for details). The specified
search path comprises a space-separated list of one or more of:
CURRENT – The last-used value of the parameter
PROMPT – prompt for the value
DEFAULT – take the static default
DYNAMIC – take the dynamic default
GLOBAL – take the value of the associated GLOBAL parameter
NOPROMPT – prevents a prompt as a last resort.
INTERNAL – can only be used alone, implies DYNAMIC,CURRENT,NOPROMPT.

Invocation:

vpath search_path

Arguments:

search_path
A space-separated list of possible sources.

Examples:
vpath CURRENT DEFAULT

If there is no current value, use the static default.

Effects:

ADAM: The appropriate vpath field is written to the Interface Files.

IRAF: In the absence of a repeated or dynamic keyword, the following rules apply: If
the first element of the vpath is PROMPT or there is no vpath specifier, the IRAF
parameter is made automatic mode. If the first element is GLOBAL, the parameter is
made dynamic. In all other cases it is made hidden.
The repeated or dynamic keywords will override this behaviour.

http://www.starlink.ac.uk/cgi-bin/htxserver/sun115.htx/sun115.html?xref_

	Introduction
	Interface Definition Files
	The Basic IFD
	Conditional Sections
	Creating IFDs from Interface files

	Producing Starlink Environment Files from an IFD
	Producing IRAF Files from an IFD
	Producing IRAF-specific Interface Files from an IFD
	The `Full' IFD File
	IFD Initial Keywords
	Additional Action Keywords
	Parameter Definition Keywords
	General
	The dynamic keyword
	The outputpar keyword
	The repeated keyword
	The size keyword

	The command Keywords
	File-specific Output

	Details of IFD File Keywords
	access
	action
	alias
	association
	cl
	command
	csh
	default
	defhelp
	display
	dynamic
	executable
	exepath
	help
	helpkey
	helplib
	icl
	in
	keyword
	obey
	obsolete
	outputpar
	package
	parameter
	position
	ppath
	prefix
	print
	prompt
	range
	repeated
	sh
	size
	task
	taskinherit
	taskparam
	type
	version
	vpath

